Curriculum Structure (2015-18)

Scheme of Teaching for M.C.A.

Curriculum framework:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject Area</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Core Courses (Theory, Practical)</td>
<td>CC 90</td>
</tr>
<tr>
<td>2</td>
<td>Compulsory Foundation & Humanities</td>
<td>CF 18</td>
</tr>
<tr>
<td>3</td>
<td>Foundation Elective</td>
<td>FE 08</td>
</tr>
<tr>
<td>4</td>
<td>Generic Elective</td>
<td>GE 16</td>
</tr>
<tr>
<td>5</td>
<td>Project</td>
<td>CC 14</td>
</tr>
<tr>
<td>6</td>
<td>Seminar</td>
<td>SC 02</td>
</tr>
<tr>
<td>8</td>
<td>Certification Courses</td>
<td>CT 02</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>150</td>
</tr>
</tbody>
</table>

Lecture (L): One Hour /week – 1 credit
Practical (P): Three hours /week – 2 credits
Tutorials (T): 2 hours /week – 1 credit

Distribution of credits

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
</tr>
</tbody>
</table>
I Semester

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>L-T-P</th>
<th>Credits</th>
<th>Contact Hours</th>
<th>CIE Marks</th>
<th>SEE Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15MCA11</td>
<td>UNIX and Shell Programming</td>
<td>CF</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>15MCA12</td>
<td>Web Programming</td>
<td>CF</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>15MCA13</td>
<td>Digital Systems and Computer Organization</td>
<td>CC</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>15MCA14</td>
<td>Computer Programming Language (C)</td>
<td>CC</td>
<td>3-1-0</td>
<td>4</td>
<td>5</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>15MCA15</td>
<td>Discrete Mathematics</td>
<td>CC</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>15MCA16</td>
<td>UNIX & Shell Programming Laboratory</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>15MCA17</td>
<td>Web Programming Laboratory</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>15MCA18</td>
<td>Computer Programming Laboratory (C)</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>19-1-3</td>
<td></td>
<td></td>
<td>26</td>
<td>30</td>
<td>400</td>
<td>400</td>
<td>800</td>
<td></td>
</tr>
</tbody>
</table>

CIE: Continuous Internal Evaluation
SEE: Semester End Examination
L: Lecture
T: Tutorial
P: Practical
CC: Core Course
CF: Compulsory Foundation

II Semester

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>L-T-P</th>
<th>Credits</th>
<th>Contact Hours</th>
<th>CIE Marks</th>
<th>SEE Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15MCA21</td>
<td>Data Structures</td>
<td>CC</td>
<td>3-1-0</td>
<td>4</td>
<td>5</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>15MCA22</td>
<td>Database Management Systems</td>
<td>CF</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>15MCA23</td>
<td>Operating Systems</td>
<td>CC</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>15MCA24</td>
<td>Object Oriented Programming-1 (C++)</td>
<td>CC</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>15MCA25</td>
<td>System Software</td>
<td>CC</td>
<td>3-1-0</td>
<td>4</td>
<td>5</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>15MCA26</td>
<td>Data Structures Laboratory</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>15MCA27</td>
<td>Database Management Systems Laboratory</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>15MCA28</td>
<td>Object Oriented Programming-1 Laboratory (C++)</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>18-2-3</td>
<td></td>
<td></td>
<td>26</td>
<td>31</td>
<td>400</td>
<td>400</td>
<td>800</td>
<td></td>
</tr>
</tbody>
</table>

CIE: Continuous Internal Evaluation
SEE: Semester End Examination
L: Lecture
T: Tutorial
P: Practical
CC: Core Course
CF: Compulsory Foundation
III Semester

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>L-T-P</th>
<th>Credits</th>
<th>Contact Hours</th>
<th>CIE Marks</th>
<th>SEE Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15MCA31</td>
<td>Computer Networks</td>
<td>CF</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>15MCA32</td>
<td>Object Oriented Programming-2 (Java)</td>
<td>CC</td>
<td>3-1-0</td>
<td>4</td>
<td>5</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>15MCA33</td>
<td>Software Engineering</td>
<td>CC</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>15MCA34</td>
<td>Internet Web Programming</td>
<td>FE</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>15MCA35</td>
<td>MIS & E-Commerce</td>
<td>FE</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>15MCA36</td>
<td>Computer Networks Laboratory</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>15MCA37</td>
<td>Object Oriented Programming-2 Laboratory (Java)</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>15MCA38</td>
<td>Internet Web Programming Laboratory</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>15MCA39</td>
<td>Bridge course (Lateral Entry)</td>
<td>MNC</td>
<td></td>
<td>26</td>
<td>400</td>
<td>400</td>
<td>800</td>
<td></td>
</tr>
</tbody>
</table>

CIE: Continuous Internal Evaluation **SEE:** Semester End Examination **L:** Lecture **T:** Tutorial **P:** Practical
CC: Core Course **CF:** Compulsory Foundation **FE:** Foundation Elective **MNC:** Mandatory Non-Credit

Certification Courses: 2-credits

- Two certifications are compulsory and need to be completed before start of 6th semester.
- Choose certifications, which have industrial acceptance.
- Students have to submit the certificates with valid score of the certifications they have completed to the department during 6th semester. **This is mandatory for the award of the credits and degree.**
- These certifications are evaluated by a panel formed at college level during 6th semester for the award of 2 credits.
IV Semester

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>L-T-P</th>
<th>Credits</th>
<th>Contact Hours</th>
<th>CIE Marks</th>
<th>SEE Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15MCA41</td>
<td>Analysis and Design of Algorithms</td>
<td>CC</td>
<td>3-1-0</td>
<td>4</td>
<td>5</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>15MCA42</td>
<td>Topics in Enterprise Architecture-1 (J2EE)</td>
<td>CC</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>15MCA43</td>
<td>Computer Graphics and Visualization</td>
<td>CC</td>
<td>3-1-0</td>
<td>4</td>
<td>5</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>15MCA44X</td>
<td>Elective – 1</td>
<td>GE</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>15MCA45X</td>
<td>Elective – 2</td>
<td>GE</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>15MCA46</td>
<td>Algorithms Laboratory</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>15MCA47</td>
<td>Topics in Enterprise Architecture-1 Laboratory (J2EE)</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>15MCA48</td>
<td>Computer Graphics Laboratory</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>15MCA49</td>
<td>Communicative English</td>
<td>CF</td>
<td>2-0-0</td>
<td>2</td>
<td>1</td>
<td>50</td>
<td>--</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>20-2-3</td>
<td>28</td>
<td>32</td>
<td>450</td>
<td>400</td>
<td>850</td>
</tr>
</tbody>
</table>

CIE: Continuous Internal Evaluation
SEE: Semester End Examination
L: Lecture
T: Tutorial
P: Practical
CC: Core Course
FE: Foundation
GE: Generic
Elective

Note: Students are advised to select any one subject from the following elective groups for Elective-1 and Elective-2 respectively.

Elective Group-1

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>441</td>
<td>Advanced Database Management Systems</td>
</tr>
<tr>
<td>2</td>
<td>442</td>
<td>UNIX System Programming</td>
</tr>
<tr>
<td>3</td>
<td>443</td>
<td>Cloud Computing</td>
</tr>
<tr>
<td>4</td>
<td>444</td>
<td>Advanced Computer Networks</td>
</tr>
<tr>
<td>5</td>
<td>445</td>
<td>Software Testing</td>
</tr>
<tr>
<td>6</td>
<td>446</td>
<td>Enterprise Resource Planning</td>
</tr>
<tr>
<td>7</td>
<td>447</td>
<td>Operations Research</td>
</tr>
</tbody>
</table>

Elective Group-2

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>451</td>
<td>Big Data Analytics</td>
</tr>
<tr>
<td>2</td>
<td>452</td>
<td>Finite Automata and Formal Languages</td>
</tr>
<tr>
<td>3</td>
<td>453</td>
<td>Software Architecture</td>
</tr>
<tr>
<td>4</td>
<td>454</td>
<td>Mobile Applications</td>
</tr>
<tr>
<td>5</td>
<td>455</td>
<td>Client-Server Computing</td>
</tr>
<tr>
<td>6</td>
<td>456</td>
<td>Principles of User Interface Design</td>
</tr>
<tr>
<td>7</td>
<td>457</td>
<td>Mobile Computing</td>
</tr>
</tbody>
</table>
V Semester

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>L-T-P</th>
<th>Credits</th>
<th>Contact Hours</th>
<th>CIE Marks</th>
<th>SEE Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15MCA51</td>
<td>Object Oriented Modeling and Design</td>
<td>CC</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>15MCA52</td>
<td>Topics in Enterprise Architecture (C#.NET)</td>
<td>CC</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>15MCA53</td>
<td>Simulation and Modeling</td>
<td>CC</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>15MCA54X</td>
<td>Elective – 3</td>
<td>GE</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>15MCA55X</td>
<td>Elective – 4</td>
<td>GE</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>15MCA56</td>
<td>Object Oriented Modeling and Design laboratory</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>15MCA57</td>
<td>Topics in Enterprise Architecture 2(C#.NET) Laboratory</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>15MCA58</td>
<td>Project Work-1</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>20-0-3</td>
<td>26</td>
<td>29</td>
<td>400</td>
<td>400</td>
<td>800</td>
</tr>
</tbody>
</table>

CIE: Continuous Internal Evaluation **SEE:** Semester End Examination **L:** Lecture **T:** Tutorial **P:** Practical
CC: Core Course **GE:** Generic Elective

Elective Groups

Note: Students are advised to select any one subject from the following elective groups for Elective-3 and Elective-4 respectively.

Elective Group- 3

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>541</td>
<td>Data Mining and Data Warehousing</td>
</tr>
<tr>
<td>2</td>
<td>542</td>
<td>Compiler Design</td>
</tr>
<tr>
<td>3</td>
<td>543</td>
<td>Services Oriented Architecture</td>
</tr>
<tr>
<td>4</td>
<td>544</td>
<td>Digital Marketing</td>
</tr>
<tr>
<td>5</td>
<td>545</td>
<td>Software Project Management</td>
</tr>
<tr>
<td>6</td>
<td>546</td>
<td>Supply Chain Management</td>
</tr>
<tr>
<td>7</td>
<td>547</td>
<td>Digital Image Processing</td>
</tr>
</tbody>
</table>

Elective Group- 4

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>551</td>
<td>NOSQL</td>
</tr>
<tr>
<td>2</td>
<td>552</td>
<td>Web 2.0 and Rich Internet Applications</td>
</tr>
<tr>
<td>3</td>
<td>553</td>
<td>Storage Area Networks</td>
</tr>
<tr>
<td>4</td>
<td>554</td>
<td>Information and Network Security</td>
</tr>
<tr>
<td>5</td>
<td>555</td>
<td>Mobile Ad-hoc Sensor Network</td>
</tr>
<tr>
<td>6</td>
<td>556</td>
<td>Professional Communications and Ethics</td>
</tr>
<tr>
<td>7</td>
<td>557</td>
<td>Pattern Recognition</td>
</tr>
</tbody>
</table>
VI Semester

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>L-T-P</th>
<th>Credits</th>
<th>Contact Hours</th>
<th>CIE Marks</th>
<th>SEE Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td>15MCA61</td>
<td>Internship</td>
<td>CC</td>
<td>NA</td>
<td>2</td>
<td>Full Time</td>
<td>50</td>
<td>--</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>15MCA62</td>
<td>Seminar</td>
<td>SC</td>
<td>0-2-0</td>
<td>2</td>
<td>2</td>
<td>50</td>
<td>--</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>15MCA63</td>
<td>Project Work-2</td>
<td>CC</td>
<td>NA</td>
<td>12</td>
<td>Full Time</td>
<td>100</td>
<td>75</td>
<td>400</td>
</tr>
<tr>
<td>4</td>
<td>15MCA64</td>
<td>Certification-1</td>
<td>CT</td>
<td>NA</td>
<td>1</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>15MCA65</td>
<td>Certification-2</td>
<td>CT</td>
<td>NA</td>
<td>1</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Total | NA | 18 | -- | 200 | 100 | 125 | 75 | 500 |

CIE: Continuous Internal Evaluation **SEE**: Semester End Examination **L**: Lecture **T**: Tutorial **P**: Practical **CC**: Compulsory Core **SC**: Seminar Component **NA**: Not Applicable

Seminar Component (15MCA62): 2-Credit

Seminar topics to be chosen from any reputed journals like IEEE/ Springer/Elsevier (Science Direct)/scopus/DBLP indexed conference papers etc.

15MCA64 and 15MCA65: Certification Courses

Please refer to the III (Third) semester Scheme for guidelines

Department of Master of Computer Applications

Scheme and Syllabus (2017 Scheme)
1st Semester Master of Computer Applications (M.C.A.)
INSTITUTION VISION

Gogte Institute of Technology shall stand out as an institution of excellence in technical education and in training individuals for outstanding caliber, character coupled with creativity and entrepreneurial skills.

MISSION

To train the students to become Quality Engineers with High Standards of Professionalism and Ethics who have Positive Attitude, a Perfect blend of Techno-Managerial Skills and Problem solving ability with an analytical and innovative mindset.

QUALITY POLICY

- Imparting value added technical education with state-of-the-art technology in a congenial, disciplined and a research oriented environment.
- Fostering cultural, ethical, moral and social values in the human resources of the institution.
- Reinforcing our bonds with the Parents, Industry, Alumni, and to seek their suggestions for innovating and excelling in every sphere of quality education.

DEPARTMENT VISION

The department of Master of Computer Applications shall strive to stand out as par excellence in generating and grooming, technically competent and skilled intellectual professionals to meet the challenges of the modern computing industry.

MISSION

To train the graduates to become IT professionals having strong fundamental knowledge in the field of computer application with ethical values to meet increasing global challenges of ever evolving technologies.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

1. The graduates will be inculcated with substantial knowledge of mathematics, computer Science and its applications so that they become proficient in providing solutions to computing problems.
2. The graduates will be trained to develop the ability to analyze, model, design, implement system to meet specified requirements while considering real-world constraints.
3. The graduates will be provided with a platform to explore latest trends and technology adequate training & opportunities to work as a team on multidisciplinary projects with skills and leadership qualities.
4. The graduates will be made aware on the benefits of life-long learning and will be introduced and codes of professional practice
PROGRAM OUTCOMES (POs)

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management.
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems.
3. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data.
4. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications.
5. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains.
6. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications.
7. Postgraduates will demonstrate knowledge of professional and ethical responsibilities.
8. Postgraduates will be able to communicate effectively in both verbal and written form.
9. Postgraduates will show the understanding of impact of engineering solutions on the society as a successful entrepreneur or IT professional.
11. Postgraduates can participate and succeed in competitive examinations.
12. Postgraduates will use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PROGRAM SPECIFIC OUTCOMES (PSOs)

1. Professional Skills: The ability to understand, analyze and develop computer programs in the areas related to algorithms, system software, simulation, software design, web design, big data analytics, and networking for efficient design of computer-based systems of varying complexity.
2. Problem-Solving Skills: The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality applications for business success.
3. Successful Career and Entrepreneurship: The ability to employ modern computer languages, technologies, environments, and platforms in creating innovative career paths to be an entrepreneur, and a zest for higher studies.
Scheme of Teaching

I Semester

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>L-T-P</th>
<th>Credits</th>
<th>Contact Hours</th>
<th>CIE Marks</th>
<th>SEE Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15MCA11</td>
<td>UNIX and Shell Programming</td>
<td>CF</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>15MCA12</td>
<td>Web Programming</td>
<td>CF</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>15MCA13</td>
<td>Digital Systems and Computer Organization</td>
<td>CC</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>15MCA14</td>
<td>Computer Programming Language (C)</td>
<td>CC</td>
<td>3-1-0</td>
<td>4</td>
<td>5</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>15MCA15</td>
<td>Discrete Mathematics</td>
<td>CC</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>15MCA16</td>
<td>UNIX & Shell Programming Laboratory</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>15MCA17</td>
<td>Web Programming Laboratory</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>15MCA18</td>
<td>Computer Programming Laboratory (C)</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>19-1-3</td>
<td>26</td>
<td>30</td>
<td>400</td>
<td>400</td>
<td>800</td>
</tr>
</tbody>
</table>

CIE: Continuous Internal Evaluation
SEE: Semester End Examination
L: Lecture
T: Tutorial
P: Practical
CC: Core Course
GE: Generic Elective
CF: Compulsory Foundation
UNIX and Shell Programming (Theory)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA11</th>
<th>Credits</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>CC</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>4-0-0</td>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives
1. Focusing on its history, architecture, the file system, process, editors, command usage, filters, regular expressions and other utility tools
2. To explore the fundamentals of UNIX command set and their usage to provide sufficient knowledge on writing scripts with different UNIX languages.

Pre-requisites:
1. A basic understanding on various computer concepts and working knowledge in any programming language.

Unit – I
10 Hours

Self learning topics:

Unit – II
11 Hours

Basic File Attributes, The shell: ls – l, the –d option, File Permissions, chmod, Security and File Permission, users and groups, security level, changing permission, user masks, changing ownership and group, File Attributes, More file attributes: hard link, symbolic link, umask, find. The shell as command processor, Escaping. Standard I/O, redirection Pipes: Standard I/O, Redirection, Pipe & Pipeline, Mixing inputs from standard input and a file, tee command, Terminal (/dev/tty) and Trash(/dev/null) files.

Self learning topics:

Unit – III
11 Hours

Shell Programming: Shell variables, The export command, The .profile file, read command, positional parameters, the $? Variable, set command, exit command, Branching Control Structures, Loop-Control Structures, The continue & break statements, The expr command, real arithmetic in shell programs, here document, sleep command, debugging scripts, script command.

Self learning topics: Debugging Scripts

Unit – IV
10 Hours

Simple Filters and Regular Expressions: cut, paste, sort, uniq, tr commands, Filters using Regular Expression : grep –searching for a pattern, options, Regular Expressions-Round one & two, egrep,
fgrep, sed - The stream editor, Line Addressing, Inserting and Changing Text, Context addressing, editing text, substitution, IRE, TRE

Self learning topics: Interval Regular Expressions and Tagged Regular Expressions.

Unit – V

10 Hours

The Process, AWK-Advanced filter: Meaning, Parent and Child processes, types of processes, More about foreground and Background processes, internal and external commands, the ps command, process creation, The nohup command, The nice command, Signals, trap, sty, kill, wait commands, Job control, command history, Scheduling jobs’ execution.

Syntax of an awk program statement, structure of an awk script, operational mechanism of awk, variables, records, fields and special variables, Addressing-Line and Context, Patterns, Operators, Sample input files, awk control structures, Functions in awk, Executing awk scripts with the Shell, Arrays.

Self learning topics: Practicing the commands learnt in process topic.

Books

Course Outcome (COs)

At the end of the course, the student will be able to

1. **Explain** the fundamental UNIX concepts, architecture and features of UNIX operating system and demonstrate the flexibility of command usage.
 Bloom’s Level L 2
2. **Classify** the file types with different file attributes and **demonstrate** file-handling techniques.
 L 2, L 4
3. **Demonstrate** the use of pipes and filters like grep, sed using basic and extended regular expressions.
 L 2
4. **Design** Shell programs for solving various problems using essential and advanced features of shell programming.
 L 6
5. **Explain** process creation mechanism and identify kernel’s role in Process Management & job scheduling.
 L 2

Program Outcome of this course (POs)

3. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
 PO No. 3
5. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains
 5
6. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications.
 6

Course delivery methods

1. Lecture
2. Power-Point Presentation
3. Video

Assessment methods

1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project
Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

➢ Writing two IA test is compulsory.
➢ Minimum marks required to qualify for SEE : 20

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.
Web Programming (Theory)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA12</th>
<th>Credits</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>CF</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>4-0-0</td>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives
1. Providing a clear understanding of Web Technologies.
2. Delivering the importance of HTML, JavaScript and XML.
3. Making use of different tools to develop Web Applications.
4. Imparting the knowledge of programming using XHTML, JavaScript and XML.
5. Guiding the students to construct simple JavaScript user interfaces and an ability to build platform independent web applications using LAMP Standard development kit.

Unit – I

Unit – II
Introduction to XHTML, Cascading Style Sheets:
Introduction, Levels of style sheets, Style specification formats, Selector forms, Property value forms, Font properties, List properties, Color, Alignment of text, The box model, Background images, The and <div> tags, Conflict resolution.

Unit – III
The Basics of JavaScript: Overview of JavaScript, Object orientation and JavaScript, Syntactic characteristics, Primitives, operations and expressions, Screen output and keyboard input, Control statements, Object creation and modification, Arrays, Functions, Constructors.
Self-Learning Topics:
Pattern Matching using regular expressions, Errors in scripts, Examples.

Unit – IV
Dynamic Documents with JavaScript, Introduction to XML:
Introduction, Positioning Elements, Moving Elements, Element Visibility, Changing Colors and Fonts, Dynamic Content, Stacking Elements, Locating the Mouse Cursor, Reacting to a Mouse Click, Slow Movement of Elements, Dragging and Dropping Elements.
Self-Learning Topics:
XML processors, Web services
Unit – V

Perl and CGI Programming: Origins and uses of Perl, Scalars and their operations, Assignment statements and simple input and output, Control statements, Fundamentals of arrays, Hashes, References, Functions, Pattern matching, File input and output; Examples. Using Perl for CGI Programming: The Common Gateway Interface; CGI linkage; Query string format; CGI.pm module

Self learning topics: Cookies

Books

Course Outcome (COs)
At the end of the course, the student will be able to

1. Explain basic web concepts to build applications that are Object Based and Platform Independent.
2. Analyze any given problem to get the desired output.
3. Apply the concepts of JavaScript Technology in building web applications.
4. Develop client side web applications.
5. Design applications using XML.
6. Apply the concepts of Web Technology in establishing his/her own entrepreneurship in the world of web programming.

Program Outcome of this course (POs)
1. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
2. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains
3. Postgraduates will demonstrate knowledge of professional and ethical responsibilities.

Course delivery methods
1. Lecture
2. Power-Pont Presentation
3. Video

Assessment methods
1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

➤ Writing two IA test is compulsory.
➤ Minimum marks required to qualify for SEE : 20
Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units

Digital Systems and Computer Organization (Theory)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>15MCA13</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>CIE Marks</td>
<td>CC</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>SEE Marks</td>
<td>4-0-0</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>SEE Duration</td>
<td>52</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Providing a clear understanding of the basic structure and operation of a digital computer.
2. Studying different number system representation and conversion from one number system to another.
3. Discussing the theorems and properties of Boolean algebra.
4. Explaining the different ways of communicating with I/O devices and standard I/O interfaces.
5. Discussing in detail the arithmetic operations and algorithms on fixed-point numbers and IEEE floating point representation.
6. Studying the working of hierarchical memory system including cache memories and virtual memory.
7. Emphasizing on the performance of computer system and calculate the performance using SPEC rating.

Pre-requisites:
Idea of Basic Computer and its Operations

Unit – I

Binary Systems, Combinational Logic

Boolean Algebra And Logic Gates
Axiomatic Definition of Boolean Algebra, Basic Theorems and Properties of Boolean Algebra, Boolean Functions, Canonical and Standard Forms, Other Logic Operations, Digital Logic Gates.

Unit – II

Simplification Of Boolean Functions

Unit – III

Basic Structure of Computers
Computer types, Functional Units, Basic Operational Concepts, Bus Structure, Software, Performance, Multiprocessors and Multicomputer,

Machine Instructions and Programs
Memory Locations and Addresses, Memory Operations, Instructions and Instruction Sequencing, Addressing Modes, Basic Input/Output operations

Self-Learning Topics: 8086 addressing modes and instruction sets, Examples
Unit – IV
12 Hours

Input / Output Organization: Accessing I/O Devices, Interrupts, DMA Processor Examples, Buses.

Arithmetic: Addition and Subtraction of Signed Numbers, Multiplication of Positive Numbers, Signed Operand Multiplication, Fast Multiplication,

Self-Learning Topics: Processor Examples.

Unit – V
12 Hours

The Memory System: Some Basic Concepts, Semiconductor RAM Memories, Read-only Memories, Speed, Size, Cost, Cache Memories, Virtual Memories, Memory Management Requirements, Secondary Storage.

Books

Course Outcome (COs)

At the end of the course, the student will be able to

| Bloom’s Level | 1. **Explain the** basic structure and operation of a digital computer.
2. **Explain** logical gates and **design** different circuits using logic gates.
3. **Demonstrate** the working of adders, subtractors in a computer system.
4. **Apply** the theorems and properties of Boolean algebra to simplify Boolean expression and **design** logical circuits.
5. **Explain** different ways of communication with I/O devices and standard I/O interfaces.
6. **Apply** arithmetic operations on binary number system.
7. **Analyze** the performance of different computer systems by considering memory size, speed, architecture, and instruction set.
8. **Explain** how programs and data are stored and represented in a computer system. |

Program Outcome of this course (POs)

| PO No. | 1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems
3. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications.
4. Postgraduates will develop confidence for self education and ability for life-long learning.
5. Post graduates can participate and succeed in competitive examinations. |

12
Course delivery methods
1. Lecture
2. Power-Point Presentation
3. Video

Assessment methods
1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

➤ Writing two IA test is compulsory.
➤ Minimum marks required to qualify for SEE : 20

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Computer Programming Language (C) (Theory)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA14</th>
<th>Credits</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>CC</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>3-1-0</td>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Providing a clear understanding of problem domain, Analyze and design the solution for a given problem with Representation of the solution in the form of flowchart/algorithm.
2. Computer programming languages share common fundamental concepts, and this course will introduce you to those concepts using the C programming language.
3. Write modular and professional with resourceful C programs for various scientific engineering and business domains.
4. Exhibit verification and validation of the program correctness. Use of good programming practices required in the industry.

Pre-requisites:

Knowledge of mathematics including operator precedence.

Unit – I

11 Hours

Algorithms and Flowcharts, Constants, Variables and Data Types, Operators and Expressions,

Managing Input and Output Operations:

The meaning of algorithms, Flowcharts and their need,

Writing algorithms and drawing flowcharts for simple exercises like finding biggest of three numbers, to find roots of given quadratic equation, to find the biggest and smallest of given set of numbers and such other simple examples.

Character set, C tokens, keywords & identifiers, structure of C program, executing a C program.

Constants, variables, data types, declaration of variables, declaration of storage classes, assigning values to variables defining symbolic constants, declaring a variable as constant, declaring a variable as volatile, overflow and underflow of data.

Arithmetic operators, relational operators, logical operators, assignment operator, increment and decrement operator, conditional operator, bitwise operators, comma operator, special operators, arithmetic expressions, evaluation of expressions, precedence of arithmetic operators, type conversions in expressions, operator precedence and associativity, mathematical functions.

The scanf() & printf() functions for input and output operations, reading a character, writing a character, (the getchar() & putchar() functions), the address operator(&), formatted input and output using format specifiers, Writing simple complete C programs.

Self learning topics: gets(), puts(), Advance format specifiers.

Unit – II

10 Hours

Control Statements, Loop Control Structures:

Decision making with if statement, simple if statement, the if..else statement, nesting of if..else statements, the else..if ladder, the switch statement, the ?: operator, the goto statement, the break statement, programming examples.

The while statement, the do..while statement, the for statement, nested loops, jumps in loops, the continue statement, programming examples.
Unit – III 10 Hours

Arrays, Character Arrays and Strings: The meaning of an array, one dimensional and two dimensional arrays, declaration and initialization of arrays, reading, writing and manipulation of above types of arrays, multidimensional arrays, dynamic arrays, programming examples. Declaring and initializing string variables, reading string from terminal, writing string to screen, arithmetic operations on characters, putting strings together, comparison of two strings, string handling functions, table of strings, other features of strings, programming examples.

Self learning topics: Dynamic array

Unit – IV 11 Hours

User Defined Functions, Structures and Unions: Need for user defined functions, a multi function program, elements of User defined functions, defining functions, return values and their types, function calls, function declaration, category of functions, no arguments and no return values, arguments but no return values, arguments with return values, no arguments with return value, functions that return multiple values, nesting of functions, recursion, passing arrays to functions, passing string to functions, programming examples. Defining a structure, declaring structure variables, accessing structure members, structure initialization, copying and comparing structure variables, operations on individual members, array of structures, structures within structures, structures and functions, Unions, size of structures, bit fields, programming examples.

Self learning topics: Passing structures using pointers.

Unit – V 10 Hours

Pointers, File Management in C, Dynamic Memory Allocation, The Preprocessor: Understanding pointers, accessing the address space of a variable, declaring and initialization pointer variables, accessing a variable through its pointer, chain of pointers, pointer expressions, pointers and arrays, pointer and character strings, array of pointers, pointer as function arguments, functions returning pointers, pointers to functions, pointers and structures, programming examples. Defining and opening a file, closing a file, input/output operations on files, error handling During I/O operations, random access files, command line arguments, programming examples. Dynamic memory allocation, allocating a block of memory: malloc, allocating multiple blocks of memory: calloc, releasing the used space: Free, altering the size of a block: realloc, programming examples. Introduction, macro substitution, files inclusion, compiler control directives, ANSI additions, programming exercises.

Books

3. Reema Thareja Programming in C, Oxford Higher Education

Course Outcome (COs)

At the end of the course, the student will be able to

1. Discuss basics of computers hardware and number systems and to understand the basic terminology used in computer programming.
2. Adapt the common data structures typically found in C programs namely arrays, strings, structures, unions and files.
3. Select Unix commands to manage files and develop programs, including multi-module programs and make files.
4. Design a computer program to solve simple and complex problems of different
domains.

5. **Assess** industry standard programming styles and practices.

Program Outcome of this course (POs)

<table>
<thead>
<tr>
<th>PO No.</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Postgraduates will demonstrate knowledge of mathematics, computer applications, and management.</td>
</tr>
<tr>
<td>2</td>
<td>Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems.</td>
</tr>
<tr>
<td>3</td>
<td>Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data.</td>
</tr>
<tr>
<td>4</td>
<td>Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains.</td>
</tr>
<tr>
<td>5</td>
<td>Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications.</td>
</tr>
</tbody>
</table>

Course delivery methods

1. Lecture
2. Power-Point Presentation
3. Video
4.

Assessment methods

1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td></td>
<td></td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE: 20

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):

1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. **Minimum marks required in SEE to pass: 20**
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Discrete Mathematical Structures (Theory)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA15</th>
<th>Credits</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Type</td>
<td>CC</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week:</td>
<td>4-0-0</td>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives
1. Providing a clear understanding of Set and is fundamental requirement to study DMS
2. The art of applying language of logic
3. To Explain them concepts of Relations, Functions.
4. Identify the problems involving number theory, permutations and combinations.
5. To Reproduce techniques of Mathematical Induction and Recurrence relations.
6. To Criticize that Graph theory is one of the important, essential, useful and Matrix oriented wonderful topic.

Pre-requisites : Set Theory

Unit – I
12 Hours

Fundamentals of Logic

Self learning topics: Basic connectives and truth tables

Unit – II
09 Hours

Set Theory

Unit – III
09 Hours

Properties of Integers and Recurrence
Mathematical Induction, Recursive definitions, The Greatest Common Divisor Euclidian Algorithms, The first order Linear recurrence relation

Unit – IV
12 Hours

Relations and Functions

Self learning topics: Directed graphs and zero one matrices.

Unit – V
10 Hours

Graph Theory and Trees
Terminology, Definitions, Properties and Examples, Connectivity and Adjacency, Euler and Hamilton, Representation and Isomorphism, Planarity and Chromatic Number, Directed Graphs and Weighted Graphs, Rooted Trees, Trees and Sorting
Self learning topics: Directed graphs weighted graphs weighted trees trees and sorting.

Books

Course Outcome (COs)

At the end of the course, the student will be able to

1. Compile the concepts of sets to practical situations. [L6]
2. Discuss the mathematical logic and construct logical arguments. [L2]
3. Distinguish problems involving number theory, permutations and combinations. [L4]
4. Apply concepts of Relations, Functions. [L3]
5. Apply tools of Mathematical Induction and Recurrence relations. [L3]
6. Compare and Contrast that Graph theory as one of the important, essential, useful and Matrix oriented wonderful topic. [L2]

Bloom’s Level

L 6
L 2
L 4
L 3
L 3
L 2

Program Outcome of this course (POs)

PO No.
1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems

Course delivery methods

1. Lecture
2. Power-Point Presentation
3. Video

Assessment methods

1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Course delivery methods

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

➢ Writing two IA test is compulsory.
➢ Minimum marks required to qualify for SEE : 20

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.
Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

UNIX and Shell Programming Laboratory (Lab)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA16</th>
<th>Credits</th>
<th>02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>CC</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>0-0-1</td>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>42</td>
<td>SEE Duration</td>
<td>3 Hours for 50 marks</td>
</tr>
</tbody>
</table>

Course learning objectives
1. **Providing a clear understanding** of core aspects of UNIX operating system, focusing on editors, command usage, filters, regular expressions and other utility tools.
2. To explore the fundamentals of UNIX command set and their usage to provide sufficient knowledge on writing scripts with different UNIX languages.

Pre-requisites:
2. A basic understanding on various computer concepts and working knowledge in any programming language

Laboratory Exercises:
Maximum 10 experiments can be framed on the following concepts:
General purpose utilities, File handling commands, Basic file attribute commands, Simple filters and Regular expressions, grep command, sed command, awk command

Books

Course Outcome (COs)
At the end of the course, the student will be able to

<table>
<thead>
<tr>
<th>Bloom’s Level</th>
<th>PO No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 2</td>
<td>3</td>
</tr>
<tr>
<td>L 4</td>
<td>4</td>
</tr>
<tr>
<td>L 2</td>
<td>5</td>
</tr>
<tr>
<td>L 5</td>
<td>6</td>
</tr>
<tr>
<td>L 2</td>
<td>6</td>
</tr>
<tr>
<td>L 6</td>
<td>6</td>
</tr>
</tbody>
</table>

Program Outcome of this course (POs)
1. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
2. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications
Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains

Assessment methods
1. Internal Lab Test
2. Conduction of experiments in regular lab
3. Journal write-up

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Conduct of the lab</th>
<th>Journal submission</th>
<th>Lab test</th>
<th>Attendance</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Submission and certification of lab journal is compulsory to qualify for SEE.
- Minimum marks required to qualify for SEE: 25

Scheme of Semester End Examination (SEE):

1. It will be conducted for 50 marks of 3 hours duration.
2. Viva-voce shall be conducted for individual student and not in a group.
3. Minimum marks required in SEE to pass: 20
 - Initial write up 20 marks
 - Conduct of experiments 20 marks
 - Viva-voce 10 marks
4. 50 marks
5. **NOTE: Change of program during lab examinations is not permitted**

Course Code: 15MCA17
Credits: 02

Course Type: CC
CIE Marks: 50 marks

Hours/week: L-T-P: 0-0-1
SEE Marks: 50 marks

Total Hours: 42
SEE Duration: 3 Hours for 50 marks

Course Learning Objectives:
1. Providing knowledge of Web Technologies to build a Web Application.
2. Designing and developing front-end and back-end of a Web Application
3. Exploring the advantages of emerging Web Technologies and the environment in which they are used.

Prerequisites:
Knowledge of editors, explorers used in different Operating Systems

Laboratory Exercises:
Maximum 10 experiments can be framed on the following Concepts:
Basic text formatting tags, fonts, tables, external hyperlinks and internal hyperlinks, on image insertion, Cascading Style Sheets(CSS), forms, JavaScript Arrays, JavaScript strings, string Manipulations, JavaScript operators, event handling, Extensible Markup Language(XML), XML Schemas, Document Type Definitions (DTD's) and XSLT style sheet, CGI and Perl programming.

Books

Course Outcome (COs)
At the end of the course, the student will be able to

1. Develop web pages that adhere to the standards of W3C recommendation.
 Bloom’s Level: L 6
2. Categorize the various navigation strategies.
 Bloom’s Level: L 4
3. Design Web pages using Client-Side technologies like XHTML CSS forms, and JavaScript.
 Bloom’s Level: L 6
4. Develop Web documents that are usable and accessible using Web Authoring.
 Bloom’s Level: L 6
5. Identify and evaluate Website organizational structure.
 Bloom’s Level: L 3, L 5
6. Develop an XML application.
 Bloom’s Level: L 6

Program Outcome of this course (POs)
1. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
 PO No.: 3
2. Postgraduates will demonstrate an ability to analyze and build computer applications
 PO No.: 5
for multiple domains
Postgraduates will demonstrate knowledge of professional and ethical responsibilities.

Assessment methods
1. Internal Lab Test
 Conduction of experiments in
2. regular lab
3. Journal write-up

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Conduct of the lab</th>
<th>Journal submission</th>
<th>Lab test</th>
<th>Attendance</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Submission and certification of lab journal is compulsory to qualify for SEE.
- **Minimum marks required to qualify for SEE: 25**

Scheme of Semester End Examination (SEE):

1. It will be conducted for 50 marks of 3 hours duration.
2. Viva-voce shall be conducted for individual student and not in a group.
3. **Minimum marks required in SEE to pass: 20**
4. Initial write up 20 marks Conduct of experiments 20 marks 50 marks Viva-voce 10 marks

5. **NOTE: Change of program during lab examinations is not permitted**

Computer Programming Laboratory (C) (Lab)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>15MCA18</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>CIE Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>50 marks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hours/week: L-T-P</th>
<th>SEE Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0-1</td>
<td>50 marks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Hours:</th>
<th>SEE Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>3 Hours for 50 marks</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Providing a clear understanding of computer programming and emphasis problem solving on the fundamentals of structured design using the principles of Top Down problem solving strategy (divide and conquer). This includes development, testing, implementation, and documentation.

2. The course also aims to explore the logic of programming via the algorithm concepts and implement them in programming structures including functions, arrays, strings, and pointers. This course of laboratory student should demonstrate: Problem solving ability, Code reviewing Skills, Code debugging Skills.

Pre-requisites:

1. Knowledge of programming language
2. Knowledge of editors used in different Operating systems
3. Knowledge of basic mathematics

Laboratory Exercises:

Maximum 10 experiments can be framed on the following topics:

Usage of variables and operations, control statements, loop control structures, static memory structures viz. arrays, Different operations on strings, User defined data types and functions, file structures and pointers.

Books

3. Reema Thareja Programming in C, Oxford Higher Education

Course Outcome (COs)

At the end of the course, the student will be able to

1. **Interpret** the fundamental programming constructs, searching and sorting techniques.
 Bloom’s Level L 2
2. **Identify** typical C-like program environment. **Analyze** Cognitive skills to find solution for any problem.
 Bloom’s Level L 3, L 4
3. **Develop** algorithms and Communication skills.
 Bloom’s Level L 6
4. **Develop** Transferable Skills to write C-like programs including all the concepts mentioned in the laboratory concepts using proper techniques.
 Bloom’s Level L 6

Program Outcome of this course (POs)

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management.
 PO No. 1
2. Postgraduates will demonstrate an ability to identify, formulate and solve
engineering problems.

1. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data.

2. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains.

3. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications.

4. Postgraduates will be able to communicate effectively in both verbal and written form.

5. Postgraduates can participate and succeed in competitive examinations.

Assessment methods

1. Internal Lab Test
2. Conduction of experiments in regular lab
3. Journal write-up

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Conduct of the lab</th>
<th>Journal submission</th>
<th>Lab test</th>
<th>Attendance</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

* Submission and certification of lab journal is compulsory to qualify for SEE.
* Minimum marks required to qualify for SEE: 25

Scheme of Semester End Examination (SEE):

1. It will be conducted for 50 marks of 3 hours duration.

2. Viva-voce shall be conducted for individual student and not in a group.

3. Minimum marks required in SEE to pass: 20

4. Initial write up 20 marks 50 marks
 Conduct of experiments 20 marks
 Viva-voce 10 marks

5. **NOTE:** Change of program during lab examinations is not permitted

Bloom’s Taxonomy of Learning Objectives

Bloom’s Taxonomy in its various forms represents the process of learning. It was developed in 1956 by Benjamin Bloom and modified during the 1990’s by a new group of cognitive psychologists, led by Lorin Anderson (a former student of Bloom’s) to make it relevant to the 21st century. The revised taxonomy given below emphasizes what a learner “Can Do”.

<table>
<thead>
<tr>
<th>Lower order thinking skills (LOTS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 Remembering</td>
</tr>
<tr>
<td>Retrieve relevant knowledge from memory.</td>
</tr>
<tr>
<td>L2 Understanding</td>
</tr>
<tr>
<td>Construct meaning from instructional material, including oral, written, and graphic communication.</td>
</tr>
<tr>
<td>L3 Applying</td>
</tr>
<tr>
<td>Carry out or use a procedure in a given situation – using learned knowledge.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Higher order thinking skills (HOTS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L4 Analyzing</td>
</tr>
<tr>
<td>Break down knowledge into its components and determine the relationships of the components to one another and then how they relate to an overall structure or task.</td>
</tr>
<tr>
<td>L5 Evaluating</td>
</tr>
<tr>
<td>Make judgments based on criteria and standards, using previously learned knowledge.</td>
</tr>
<tr>
<td>L6 Creating</td>
</tr>
<tr>
<td>Combining or reorganizing elements to form a coherent or functional whole or into a new pattern, structure or idea.</td>
</tr>
</tbody>
</table>
Department of Master of Computer Applications

Scheme and Syllabus (2017 Scheme)
2nd Semester Master of Computer Applications (M.C.A.)
INSTITUTION VISION

Gogte Institute of Technology shall stand out as an institution of excellence in technical education and in training individuals for outstanding caliber, character coupled with creativity and entrepreneurial skills.

MISSION

To train the students to become Quality Engineers with High Standards of Professionalism and Ethics who have Positive Attitude, a Perfect blend of Techno-Managerial Skills and Problem solving ability with an analytical and innovative mindset.

QUALITY POLICY

• Imparting value added technical education with state-of-the-art technology in a congenial, disciplined and a research oriented environment.
• Fostering cultural, ethical, moral and social values in the human resources of the institution.
• Reinforcing our bonds with the Parents, Industry, Alumni, and to seek their suggestions for innovating and excelling in every sphere of quality education.

DEPARTMENT VISION

The department of Master of Computer Applications shall strive to stand out as par excellence in generating and grooming, technically competent and skilled intellectual professionals to meet the challenges of the modern computing industry.

MISSION

To train the graduates to become IT professionals having strong fundamental knowledge in the field of computer application with ethical values to meet increasing global challenges of ever evolving technologies.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

1. The graduates will be inculcated with substantial knowledge of mathematics, computer Science and its applications so that they become proficient in providing solutions to computing problems.
2. The graduates will be trained to develop the ability to analyze, model, design, implement system to meet specified requirements while considering real-world constraints.
3. The graduates will be provided with a platform to explore latest trends and technolog adequte training & opportunities to work as a team on multidisciplinary projects wit skills and leadership qualities.
4. The graduates will be made aware on the benefits of life-long learning and will be intro and codes of professional practice
PROGRAM OUTCOMES (POs)

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management.
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems.
3. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data.
4. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications.
5. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains.
6. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications.
7. Postgraduates will demonstrate knowledge of professional and ethical responsibilities.
8. Postgraduates will be able to communicate effectively in both verbal and written form.
9. Postgraduates will show the understanding of impact of engineering solutions on the society as a successful entrepreneur or IT professional.
11. Postgraduates can participate and succeed in competitive examinations.
12. Postgraduates will use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PROGRAM SPECIFIC OUTCOMES (PSOs)

1. Professional Skills: The ability to understand, analyze and develop computer programs in the areas related to algorithms, system software, simulation, software design, web design, big data analytics, and networking for efficient design of computer-based systems of varying complexity.
2. Problem-Solving Skills: The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality applications for business success.
3. Successful Career and Entrepreneurship: The ability to employ modern computer languages, technologies, environments, and platforms in creating innovative career paths to be an entrepreneur, and a zest for higher studies.
II Semester

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>L-T-P</th>
<th>Credits</th>
<th>Contact Hours</th>
<th>CIE Marks</th>
<th>SEE Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15MCA21</td>
<td>Data Structures</td>
<td>CC</td>
<td>3-1-0</td>
<td>4</td>
<td>5</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>15MCA22</td>
<td>Database Management Systems</td>
<td>CF</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>15MCA23</td>
<td>Operating Systems</td>
<td>CC</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>15MCA24</td>
<td>Object Oriented Programming-1 (C++)</td>
<td>CC</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>15MCA25</td>
<td>System Software</td>
<td>CC</td>
<td>3-1-0</td>
<td>4</td>
<td>5</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>15MCA26</td>
<td>Data Structures Laboratory</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>15MCA27</td>
<td>Database Management Systems Laboratory</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>15MCA28</td>
<td>Object Oriented Programming-1 Laboratory (C++)</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

| | Total | 18-2-3 | 26 | 31 | 400 | 400 | 800 |

CIE: Continuous Internal Evaluation **SEE**: Semester End Examination **L**: Lecture **T**: Tutorial **P**: Practical **CC**: Core Course **GE**: Generic Elective **CF**: Compulsory Foundation
Course Code: 15MCA21
Credits: 4

Course type: CC
CIE Marks: 50 marks

Hours/week: L-T-P: 3-1-0
SEE Marks: 50 marks

Total Hours: 52
SEE Duration: 3 Hours for 100 marks

Course learning objectives
1. Providing knowledge of fundamental data structures like stacks, queues, linked lists, and trees
2. Comparing and contrasting the costs and benefits of dynamic and static data structure implementations
3. Providing guidelines on selection of the appropriate data structure for modeling a given problem

Pre-requisites:
Computer Programming Language (C) (16MCA14)

Unit – I
10 Hours

Self learning topics: Dynamic memory allocation for Arrays. Advantages of using dynamic memory allocations

Unit – II
11 Hours
THE STACKS AND QUEUES:
Stack: Definition and examples. Primitive operation, Example, testing for exceptional conditions, implementing the push operation. Example: Infix, postfix and prefix, Basic definitions and examples. Evaluating a postfix expression, Program to evaluate a postfix expression, converting an expression from infix to postfix, Program to convert an expression from infix to postfx.
Queue: The queue and its sequential representation, C implementation of queues, Priority queue, Array implementation of a priority queue, circular queue and its implementation, de-queue (doubly ended queue) implementation

Self learning topics: Program to convert an expression from infix to prefix, from prefix to postfix, postfix to infix. Implement stack and queue using dynamic memory allocations

Unit – III
11 Hours
THE LISTS:
Linked lists, Inserting and removing nodes from a list, Linked implementation of stacks, Linked implementation of queues, Linked list as a data structure, Example of list operation, Header nodes, Array implementation of lists, Limitations of array implementation, Allocating and freeing dynamic variables, Linked lists using dynamic variable, Other list structures, Circular lists, Stack as a circular list, Queue as circular list, Primitive operations on circular lists, doubly linked lists

Self learning topics: Compare arrays and lists. Lists using header node

Unit – IV
10 Hours
BINARY TREES:

Self learning topics: AVL tree, Read and black tree, forests
Unit – V

10 Hours

Self learning topics: Compare time complexity for prescribed sorting techniques.

Books
1. YedidyahLangsam and Moshe J.Augenstein and Aaron M. Tenanbaum, Data structures using C , PHI. Reference books

Course Outcome (COs)

At the end of the course, the student will be able to

1. Define ADT (Abstract Data Types) and classify the basic techniques of algorithm analysis and implementation
2. Analyze recursive methods
3. Access, analyze and construct various operations on stacks and queues.
4. Evaluate and translate asymptotic notations
5. Create linked data structures such as linked lists and binary trees
6. Appraise, analyze, and design advanced data structures such as balanced search trees, hash tables

Bloom’s Level

L 1, L 2
L 4
L 4, L 5,
L 6
L 2, L 5
L 4, L 5,
L 6

Program Outcome of this course (POs)

PO No.

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems
3. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
4. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications
5. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains
6. Postgraduates will develop confidence for self education and ability for life-long learning

Assessment methods

1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Course delivery methods

1. Lecture
2. Power-Point Presentation
3. Video
Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/Course Seminar/Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

➢ Writing two IA test is compulsory.
➢ Minimum marks required to qualify for SEE: 20

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.
Database Management Systems (Theory)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>15MCA22</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>CIE Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF</td>
<td>50 marks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hours/week: L-T-P</th>
<th>SEE Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-0-0</td>
<td>50 marks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Hours:</th>
<th>SEE Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Providing a clear knowledge of the nature of Database Management System including their structure, design, and evaluation
2. Correlating the relationship between DBMS and information systems used in libraries and business
3. Imparting knowledge on designing Entity-Relationship (ER) diagram
4. Analyzing the process of normalization in relational databases
5. Providing knowledge on writing Structured Query Language (SQL) and its standards in the current and future development of DBMS
6. Developing introductory level of skill set required in the use of selected microcomputer Database Management Systems

Pre-requisites: NA

Unit – I

Introduction: Introduction; An example; Characteristics of Database approach; Actors on the screen; Workers behind the scene; Advantages of using DBMS approach; A brief history of database applications; when not to use a DBMS. Data models, schemas and instances; Three-schema architecture and data independence; Database languages and interfaces; The database system environment; Centralized and client-server architectures; Classification of Database Management systems.

Unit – II

Entity-Relationship Model and Relational Model: Using High-Level Conceptual Data Models for Database Design; An Example Database Application; Entity Types, Entity Sets, Attributes and Keys; Relationship types, Relationship Sets, Roles and Structural Constraints; Weak Entity Types; Refining the ER Design; ER Diagrams, Naming Conventions and Design Issues; Relationship types of degree higher than two. Relational Model Concepts; Relational Model Constraints and Relational Database Schemas; Update Operations, Transactions and dealing with constraint violations.

Unit – III

Relational Algebra: Unary Relational Operations: SELECT and PROJECT; Relational Algebra Operations from Set Theory; Binary Relational Operations: JOIN and DIVISION; Additional Relational Operations; Examples of Queries in Relational Algebra; Relational Database Design Using ER- to-Relational Mapping

Unit – IV

SQL: SQL Data Definition and Data Types; Specifying basic constraints in SQL; Schema change statements in SQL; Basic queries in SQL; More complex SQL Queries. Insert, Delete and Update statements in SQL; Specifying constraints as Assertion and Trigger; Views (Virtual Tables) in SQL; Additional features of SQL; Database programming issues and techniques; Embedded SQL, Dynamic SQL; Database stored procedures and SQL / PSM.

Unit – V

Database Design and PL/SQL: Informal Design Guidelines for Relation Schemas; Functional Dependencies; Normal Forms Based on Primary Keys; General Definitions of Second and Third Normal Forms; Boyce-Codd Normal Form.
Introduction to PL/SQL, Language fundamentals, conditional and sequential control, Iterative processing and loops. Exception handlers, triggers. Functions, procedures. Creating and planning PL/SQL

Self learning topics: Indexes

Books

Course Outcome (COs)

At the end of the course, the student will be able to

1. **Explain** the characteristics and functions of Database Management System
2. **Explain** types of Database Users
3. **Contrast** Data Models, Schemas, Instances; Three Schema Architecture and DBMS Component Modules
4. **Design** Entity-Relationship (ER) modeling
5. **Define** the concept of Relational Algebra and contrast the Relational Operations from Set Theory
6. **Design** queries in SQL
7. **Illustrate** the definition of Functional Dependencies, Inference Rules, and Equivalence of Sets of Functional Dependencies FDs, Minimal Sets of FDs
8. **Plan** the three Normal Forms based on Partial and Transitive Dependencies
9. **Apply** normalization techniques to normalize a database
10. **Demonstrate** the use of PL/SQL for database

Bloom’s Level

<table>
<thead>
<tr>
<th>Bloom’s Level</th>
<th>L 2</th>
<th>L 2</th>
<th>L 4</th>
<th>L 6</th>
<th>L 6</th>
<th>L 1</th>
<th>L 4</th>
</tr>
</thead>
</table>

Program Outcome of this course (POs)

PO No.

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems
3. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
4. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications
5. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains
6. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications
7. Postgraduates can participate and succeed in competitive examinations
8. Postgraduates will demonstrate research-based knowledge and research methods for addressing current issues in research trends

Course delivery methods

1. Lecture
2. Power-Point Presentation
3. Video

Assessment methods

1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project
Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE: 20

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.
Operating Systems (Theory)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>04</td>
</tr>
<tr>
<td>Course type</td>
<td>CC</td>
</tr>
<tr>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week:</td>
<td>4-0-0</td>
</tr>
<tr>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
</tr>
<tr>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Providing a clear understanding of the functions of operating system with respect to convenience, efficiency and its ability to evolve
2. Highlighting the different process states and data structures needed to support the management of many tasks
3. Summarizing the various approaches to solving the problem of mutual exclusion in an operating system
4. Providing an insight on memory hierarchy and cost-performance trade-offs and virtual memory
5. Discussing the concept of thrashing, both in terms of reasons it occurs and the techniques used to recognize and manage the problem

Pre-requisites:
A course on Digital Systems and Computer Organization (16MCA13)

Unit – I 10 Hours
Introduction to Operating Systems, System structures: Introduction to operating systems; Computer System organization; Computer System architecture; Operating System structure; Operating System operations; Process management; Memory management; Storage management; Protection and security; Distributed system; Special-purpose systems; Computing environments. Operating System Services; User - Operating System interface; System calls; Types of system calls; System programs; Operating System design and implementation; Operating System structure; Virtual machines; Operating System generation; System boot. Process concept; Process scheduling; Operations on processes; Inter-process communication

Self learning topics:Comparative study of different operating system and Architectures.

Unit – II 11 Hours
Multi-Threaded Programming, Process Synchronization: Overview; Multi-threading models; Thread Libraries; Threading issues. Process Scheduling: Basic concepts; Scheduling criteria; Scheduling algorithms; Multiple-Processor scheduling; Thread scheduling. Synchronization: The Critical section problem; Peterson’s solution; Synchronization hardware; Semaphores; Classical problems of synchronization; Monitors

Self learning topics:Exploring the essential aspects of sharing the resources among the users

Unit – III 11 Hours
Deadlocks, Memory Management: Deadlocks: System model; Deadlock characterization; Methods for handling deadlocks; Deadlock prevention; Deadlock avoidance; Deadlock detection and recovery from deadlock. Memory Management Strategies: Background; Swapping; Contiguous memory allocation; aging; Structure of page table; Segmentation. Virtual Memory Management: Background; Demand aging; Copy-on-write; Page replacement; Allocation of frames; Thrashing

Self learning topics:Analyze theory and implementation of physical and virtual memory

Unit – IV 10 Hours
Implementing File System: File system structure; Directory implementation; Free space management; Mass storage structures; Disk structure; Disk attachment; Disk management; Swap space management

Unit – V

Protection, Case Study: The Linux Operating System:
Goals of protection, Principles of protection, Domain of protection, Access control, Revocation of access rights, Capability-Based systems.
Linux history; Design principles; Kernel modules; Process management; Scheduling; Memory management; File systems, Input and output; Inter-process communication

Self learning topics:

Books

Course Outcome (COs)
At the end of the course, the student will be able to

1. **Identify** systems calls and interrupts of any operating system
 Bloom’s Level L 3
2. **Explain** input/output, disk access, and file system facilities
 L 2
3. **List** the features and limitations of an operating system used to provide protection
 L 4

Program Outcome of this course (POs)

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
 PO No. 1
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems
 2

Course delivery methods
1. Lecture
2. Power-Point Presentation
3. Video

Assessment methods
1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE : 20
Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Object Oriented Programming – 1 (C++) (Theory)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA24</th>
<th>Credits</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>CC</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>4-0-0</td>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives
1. Providing knowledge of basic Object Oriented Programming concepts
2. Comparing Modular programming with Object Oriented Programming and analyze the strengths and weaknesses of Object Oriented Programming
3. Inculcating the concepts of Operator Overloading, Function Overloading, Friend Functions, Friend Classes, Function Templates, and Class templates
4. Developing skills to write program in C++ using Classes and Objects and implement Encapsulation, Polymorphism and Inheritance
5. Handling run-time errors in a program and deal with files and input/output streams in C++.

Pre-requisites:
A course on C Programming (15MCA14)

Unit – I
10 Hours

Unit – II
10 Hours
Classes & Objects: Introduction to Class specification, Class Objects, access members, defining member functions, data hiding, constructors, destructors, parameterized constructors, static data members, functions, passing objects as arguments, returning objects, friend functions & classes, arrays of objects, Dynamic objects – Pointers to objects

Unit – III
10 Hours
Modular Programming with Functions: Function Components, argument passing, inline functions, function overloading, recursive functions, function templates and Class templates, Operator overloading using friend functions such as ++, --, [], etc
Self learning topics: STL: An overview, containers, vectors, lists maps

Unit – IV
11 Hours
Inheritance, Virtual functions & Polymorphism: Base Class, Types of Inheritance, Inheritance & protected members, protected base class inheritance, inheriting multiple base classes, Constructors, Destructors & Inheritance, Passing parameters to base Class Constructors, granting access, Virtual base classes, Virtual function -Calling a Virtual function through a base class reference, Virtual attribute is inherited; Virtual functions are hierarchical, pure virtual functions, abstract classes, using Virtual functions, Early & late binding.

Unit – V
11 Hours
I/O Streams & Exception Handling: IO Stream basics, output operator <<, input >>, additional I/O operators, overloading the output operator <<, overloading the input operator >>, file input & output, manipulators, Exception handling fundamentals, Exception handling options
Self learning topics: Data File handling
Books
3. E. Balaguruswamy: Object oriented programming with C++, TMH

Course Outcome (COs)
At the end of the course, the student will be able to
1. Explain Object Oriented Programming Concepts
2. Distinguish between procedure oriented programming and object oriented programming
3. Illustrate concepts such as classes, objects, constructors, destructors, function overloading, operator overloading, generic functions and generic classes
4. Explain the use of Friend Functions and Friend Classes
5. Develop Programs using Encapsulation, Inheritance, and Polymorphism
6. Explain the use of dynamic memory allocation, virtual functions, pure virtual functions, and abstract classes in C++.
7. Design a mechanism to handle run-time errors in C++.
8. Illustrate the use input/output streams and file handling mechanisms in C++.

Bloom’s Level
L 2
L 4
L 2
L 2
L 6
L 2
L 6
L 2

Program Outcome of this course (POs)
1. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
2. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications
3. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains
4. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications

PO No.
3
4
5
6

Course delivery methods
1. Lecture
2. Power-Point Presentation
3. Video
4.

Assessment methods
1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project
4.

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE: 20
Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. **Minimum marks required in SEE to pass: 20**
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.
System Software (Theory)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>15MCA25</td>
<td>04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>CIE Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>50 marks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hours/week: L-T-P</th>
<th>SEE Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1-0</td>
<td>50 marks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Hours:</th>
<th>SEE Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Providing a clear understanding of design and implementation of various types of system software
2. Understanding the relationship between Machine architecture and System software
3. Identifying and Comparing Machine-independent aspects of software design and machine-specific details
4. Giving an insight into the programs for the machine being studied. The student should be exposed to the use of hypothetical computer (SIC) for instructional purposes. Firstly, because it avoids the problem of dealing with the irrelevant complexities and “quirks” found on most real computers. Secondly all students begin on equal footing. No student is at an unfair disadvantage because he or she happens to be unfamiliar with hardware and software system on which the text is based
5. Exploring the need of Lex and Yacc to create compilers and interpreters

Pre-requisites:

1. A course on Digital systems and computer organization (16MCA13)
2. Data structures. (16MCA21)

Unit – I

Machine Architecture and Assemblers - I:

Self learning topics: Program Relocation.

Unit – II

Assemblers - II and Loaders

Unit – III

Linkers, Editors and Debugging Systems

Self learning topics: Relationship with Other Parts of the System, User-Interface Criteria
Unit – IV

Macro Processors

10 Hours

Unit – V

10 Hours

Compilers, Lex and Yacc:

The simplest Lex program, recognizing words with Lex, Symbol tables, Grammars, the parts of speech Lexer, A Yacc parser, the rules section, Running Lex and Yacc, Using Lex- regular expressions, a word counting problem.
Using Yacc- Grammers, Recursive rules, Shift/reduce parsing, A Yacc parser- definition section, the rules section, Symbol values and actions, The Lexer, Compiling and running a simple parser.

Self learning topics:Implementation and execution of simple lex/yacc programs.

Books
5. John R. Levine, Tony Mason & Doug Brown, Lex&Yacc, O’reilly, 1992

Course Outcome (COs)

At the end of the course, the student will be able to

1. Identify and explain the architecture of SIC and SIC-XE machine with an illustration of the role of system programming in computer operation
2. Analyze and design working of assemblers in terms of their machine dependency
3. Compare between machine independent and machine specific details of Assemblers, Loaders, and Macroprocessors
4. Design Loaders, Linkers and Macro processor
5. Explain the working of Text editors, Macro processor and their design options
6. Identify and explain the phases of compilers
7. Develop simple Lex and Yacc programs

Bloom’s Level
L 2, L 3
L 4, L 6
L 4
L 6
L 2, L 3
L 6

Program Outcome of this course (POs)

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems
3. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
4. Postgraduates can participate and succeed in competitive examinations

PO No. 1

Assessment methods
1. Internal Assessment Test

Course delivery methods
1. Lecture
2. Power-Point Presentation
3. Video
2. Quiz
3. Assignment/Seminar/Project

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE : 20

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Data Structures Laboratory (Lab)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA26</th>
<th>Credits</th>
<th>02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>CC</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>0-0-1</td>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>42</td>
<td>SEE Duration</td>
<td>3 Hours for 50 marks</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Inculcating programming strategy using Top-Down approach to solve complicated problems.
2. Delivering knowledge on Principles of Programming Languages, Programming Methodologies, Design and Analysis of Algorithms using Data Structures
3. Developing skills to write algorithms implementing stacks, queues, linked lists, trees, and graphs
4. Imparting knowledge on Hashing Techniques, Searching Techniques and Sorting Techniques
5. Using the recursive algorithms in implementing trees and graphs
6. Familiarizing the issues of Time complexity and examine various algorithms from time complexity perspective

Pre-requisites:

1. Knowledge of structured programming language.
2. Problem solving and analytical understanding using programming language
3. Exposure to Unix and related Editor

Laboratory Exercises:

Maximum 10 experiments can be framed on the following concepts:

Recursion, stack, queues, linked lists, trees, Searching and Sorting techniques

Books

4. Robert Kruse and Bruce Leung- Data structures and Program Design in C, 2007, Pearson Education

Course Outcome (COs)

At the end of the course, the student will be able to

1. **Design** well-structured complex programs using the concepts of data structures
2. **Construct and analyze** different sorting algorithms like Bubble sort, Insertion sort, Selection sort, Quick sort, Merge sort, Shell sort and Heap sort
3. **Appraise and Design** the Abstract Data Type (ADT) using both array based and linked-list based data structures, including single, double and circular linked-lists and its applications

Bloom’s Level

L 6
L 4, L 6
L 5, L 6
4. **Appraise and Design** the Stack ADT using both array based and linked-list based data structures and also implement Stack applications
 L 5, L 6

5. **Appraise and Design** the Queue ADT and Circular Queue ADT using both array based and linked-list based Data structures
 L 5, L 6

6. **Appraise and Design** binary tree ADT using linked list based data structures
 L 5, L 6

7. **Appraise and Design** AVL tree operations and implement graph traversal techniques
 L 5, L 6

Program Outcome of this course (POs)

<table>
<thead>
<tr>
<th>PO No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Postgraduates will demonstrate knowledge of mathematics, computer applications, and management</td>
</tr>
<tr>
<td>2</td>
<td>Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems</td>
</tr>
<tr>
<td>3</td>
<td>Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data</td>
</tr>
<tr>
<td>4</td>
<td>Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications</td>
</tr>
<tr>
<td>5</td>
<td>Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains</td>
</tr>
<tr>
<td>6</td>
<td>Postgraduates will develop confidence for self education and ability for life-long learning</td>
</tr>
</tbody>
</table>

Assessment methods

1. Internal Lab Test
2. Conduction of experiments in regular lab
3. Journal write-up

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Conduct of the lab</th>
<th>Journal submission</th>
<th>Lab test</th>
<th>Attendance</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Submission and certification of lab journal is compulsory to qualify for SEE.
- **Minimum marks required to qualify for SEE : 25**

Scheme of Semester End Examination (SEE):

1. It will be conducted for 50 marks of 3 hours duration.

2. **Viva-voce shall be conducted for individual student and not in a group.**

3. **Minimum marks required in SEE to pass: 20**

4. **Initial write up** 20 marks
 Conduct of experiments 20 marks
 Viva-voce 10 marks

5. **NOTE: Change of program during lab examinations is not permitted**

Database Management System Laboratory (Lab)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>15MCA27</td>
<td>02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>CIE Marks</th>
<th>SEE Marks</th>
<th>SEE Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>50 marks</td>
<td>50 marks</td>
<td>3 Hours for 50 marks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Hours:</th>
<th>42</th>
</tr>
</thead>
</table>

Course learning objectives

1. Providing a clear understanding of Database Management System as a subject in its own right, rather than as a compendium of techniques and product-specific tools
2. Familiarizing the participant with the nuances of database environments towards an information-oriented data processing oriented framework
3. Giving a good formal foundation on the relational model of data and also to present SQL and procedural interfaces to SQL comprehensively
4. Introducing systematic database design approaches covering conceptual design

Laboratory Exercises:

Maximum 8 experiments can be framed on the following concepts:
- Integrity rules and simple queries, nested queries, type of joins, views, aggregate functions, PL/SQL using triggers and procedures.

Books

Course Outcome (COs)

At the end of the course, the student will be able to

<table>
<thead>
<tr>
<th>Bloom’s Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 2, L 6</td>
</tr>
<tr>
<td>L 4</td>
</tr>
<tr>
<td>L 6</td>
</tr>
<tr>
<td>L 1, L 4</td>
</tr>
<tr>
<td>L 6</td>
</tr>
<tr>
<td>L 2</td>
</tr>
<tr>
<td>L 3</td>
</tr>
</tbody>
</table>

1. **Design** a Database and **explain** the characteristics and functions of Database Management System along with types of Database Users
2. **DBMS** Component Modules
3. **Design** Entity-Relationship (ER) modeling
4. **Define** the concept of Relational Algebra and **contrast** the Relational Operations from Set Theory
5. **Design** queries in SQL
6. **Illustrate** the Definition of Functional Dependencies, Inference Rules, Equivalence of Sets
7. **Apply** normalization techniques to normalize a database
8. **Demonstrate** the use of PL/SQL for database applications.

Program Outcome of this course (POs)

<table>
<thead>
<tr>
<th>PO No.</th>
<th>Postgraduates will demonstrate knowledge of mathematics, computer applications, and management</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Postgraduates can participate and succeed in competitive examinations</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>Postgraduates will demonstrate research-based knowledge and research methods for addressing current issues in research trends</td>
<td>12</td>
</tr>
</tbody>
</table>

Assessment methods

1. Internal Lab Test
2. Conduction of experiments in regular lab
3. Journal write-up

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Conduct of the lab</th>
<th>Journal submission</th>
<th>Lab test</th>
<th>Attendance</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Submission and certification of lab journal is compulsory to qualify for SEE.
- Minimum marks required to qualify for SEE: 25

Scheme of Semester End Examination (SEE):

1. It will be conducted for 50 marks of 3 hours duration.

2. **Viva-voce shall be conducted for individual student and not in a group.**

3. **Minimum marks required in SEE to pass: 20**

4. **Initial write up** 20 marks
 Conduct of experiments 20 marks
 Viva-voce 10 marks

5. **NOTE: Change of program during lab examinations is not permitted**
Object Oriented Programming –1 Laboratory (C++) (Lab)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA28</th>
<th>Credits</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>CC</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>0-0-1</td>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>42</td>
<td>SEE Duration</td>
<td>3 Hours for 50 marks</td>
</tr>
</tbody>
</table>

Course learning objectives
1. Providing knowledge of C++ Editors and writing programs using Classes and Objects
2. Introducing concepts like operator overloading, function overloading, function templates and class templates and implement them using C++.
3. Implementing the three traits of Object Oriented Programming, namely, Encapsulation, Inheritance and Polymorphism using C++
4. Inculcating the knowledge of handling Input/output Streams, Exceptions and Files in C++

Pre-requisites:
Knowledge of C language

Laboratory Exercises:
Maximum 10 experiments can be framed on the following Concepts:
Classes and objects, Overloading functions, Template function, Class template, Operator overloading, Copy constructor, Virtual base class and inheritance, Pure virtual function and polymorphism, Exception handling.

Books
3. E. Balaguruswamy: Object oriented programming with C++, TMH

Course Outcome (COs)
At the end of the course, the student will be able to

1. **Demonstrate** the concept of Classes and Objects
2. **Demonstrate** function overloading, operator overloading, function templates and class templates
3. **Develop** programs to implement Encapsulation, Inheritance and Polymorphism
4. **Develop** programs that can handle exceptions, files and input/output streams

<table>
<thead>
<tr>
<th>Program Outcome of this course (POs)</th>
<th>PO No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data</td>
<td>3</td>
</tr>
<tr>
<td>2. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications</td>
<td>4</td>
</tr>
<tr>
<td>3. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains</td>
<td>5</td>
</tr>
<tr>
<td>4. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications</td>
<td>6</td>
</tr>
</tbody>
</table>
Assessment methods
1. Internal Lab Test
2. Conduction of experiments in regular lab
3. Journal write-up

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Conduct of the lab</th>
<th>Journal submission</th>
<th>Lab test</th>
<th>Attendance</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

➢ Submission and certification of lab journal is compulsory to qualify for SEE.
➢ Minimum marks required to qualify for SEE : 25

Scheme of Semester End Examination (SEE):

1. It will be conducted for 50 marks of 3 hours duration.
2. Viva-voce shall be conducted for individual student and not in a group.
3. Minimum marks required in SEE to pass: 20
4. Initial write up 20 marks
 Conduct of experiments 20 marks
 Viva- voce 10 marks
5. NOTE: Change of program during lab examinations is not permitted

Bloom’s Taxonomy of Learning Objectives

Bloom’s Taxonomy in its various forms represents the process of learning. It was developed in 1956 by Benjamin Bloom and modified during the 1990’s by a new group of cognitive psychologists, led by Lorin Anderson (a former student of Bloom’s) to make it relevant to the 21st century. The revised taxonomy given below emphasizes what a learner “Can Do”.

Lower order thinking skills (LOTS)

<table>
<thead>
<tr>
<th>Level</th>
<th>Skill</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Remembering</td>
<td>Retrieve relevant knowledge from memory.</td>
</tr>
<tr>
<td>L2</td>
<td>Understanding</td>
<td>Construct meaning from instructional material, including oral, written, and graphic communication.</td>
</tr>
<tr>
<td>L3</td>
<td>Applying</td>
<td>Carry out or use a procedure in a given situation – using learned knowledge.</td>
</tr>
</tbody>
</table>

Higher order thinking skills (HOTS)

<table>
<thead>
<tr>
<th>Level</th>
<th>Skill</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L4</td>
<td>Analyzing</td>
<td>Break down knowledge into its components and determine the relationships of the components to one another and then how they relate to an overall structure or task.</td>
</tr>
<tr>
<td>L5</td>
<td>Evaluating</td>
<td>Make judgments based on criteria and standards, using previously learned knowledge.</td>
</tr>
<tr>
<td>L6</td>
<td>Creating</td>
<td>Combining or reorganizing elements to form a coherent or functional whole or into a new pattern, structure or idea.</td>
</tr>
</tbody>
</table>
KARNATAK LAW SOCIETY’S
GOGTE INSTITUTE OF TECHNOLOGY
UDYAMBAG, BELAGAVI-590008
(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)
(APPROVED BY AICTE, NEW DELHI)

Department of Master of Computer Applications

Scheme and Syllabus (2017 Scheme)
3rd Semester Master of Computer Applications (M.C.A.)
INSTITUTION VISION
Gogte Institute of Technology shall stand out as an institution of excellence in technical education and in training individuals for outstanding caliber, character coupled with creativity and entrepreneurial skills.

MISSION
To train the students to become Quality Engineers with High Standards of Professionalism and Ethics who have Positive Attitude, a Perfect blend of Techno-Managerial Skills and Problem solving ability with an analytical and innovative mindset.

QUALITY POLICY
- Imparting value added technical education with state-of-the-art technology in a congenial, disciplined and a research oriented environment.
- Fostering cultural, ethical, moral and social values in the human resources of the institution.
- Reinforcing our bonds with the Parents, Industry, Alumni, and to seek their suggestions for innovating and excelling in every sphere of quality education.

DEPARTMENT VISION
Successful Career and Entrepreneurship: The ability to employ modern computer languages, technologies, environments, and platforms in creating innovative career paths to be an entrepreneur, and a zest for higher studies.

MISSION
To train the graduates to become IT professionals having strong fundamental knowledge in the field of computer application with ethical values to meet increasing global challenges of ever evolving technologies.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)
1. The graduates will be inculcated with substantial knowledge of mathematics, computer Sc that they become proficient in providing solutions to computing problems.
2. The graduates will be trained to develop the ability to analyze, model, design, implement an to meet specified requirements while considering real-world constraints.
3. The graduates will be provided with a platform to explore latest trends and technologies adequate training & opportunities to work as a team on multidisciplinary projects with efficient leadership qualities.
4. The graduates will be made aware on the benefits of life-long learning and will be introduced codes of professional practice.
PROGRAM OUTCOMES (POs)

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management.
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems.
3. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data.
4. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications.
5. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains.
6. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications.
7. Postgraduates will demonstrate knowledge of professional and ethical responsibilities.
8. Postgraduates will be able to communicate effectively in both verbal and written form.
9. Postgraduates will show the understanding of impact of engineering solutions on the society as a successful entrepreneur or IT professional.
11. Postgraduates can participate and succeed in competitive examinations.
12. Postgraduates will use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PROGRAM SPECIFIC OUTCOMES (PSOs)

1. Professional Skills: The ability to understand, analyze and develop computer programs in the areas related to algorithms, system software, simulation, software design, web design, big data analytics, and networking for efficient design of computer-based systems of varying complexity.
2. Problem-Solving Skills: The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality applications for business success.
3. Successful Career and Entrepreneurship: The ability to employ modern computer languages, technologies, environments, and platforms in creating innovative career paths to be an entrepreneur, and a zest for higher studies.
Scheme of Teaching

III Semester

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>L-T-P</th>
<th>Credits</th>
<th>Contact Hours</th>
<th>CIE Marks</th>
<th>SEE Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15MCA31</td>
<td>Computer Networks</td>
<td>CF</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>15MCA32</td>
<td>Object Oriented Programming-2 (Java)</td>
<td>CC</td>
<td>3-1-0</td>
<td>4</td>
<td>5</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>15MCA33</td>
<td>Software Engineering</td>
<td>CC</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>15MCA34</td>
<td>Internet Web Programming</td>
<td>FE</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>15MCA35</td>
<td>MIS & E-Commerce</td>
<td>FE</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>15MCA36</td>
<td>Computer Networks Laboratory</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>15MCA37</td>
<td>Object Oriented Programming-2 Laboratory (Java)</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>15MCA38</td>
<td>Internet Web Programming Laboratory</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Total: 19-1-3 26 30 400 400 800

| 9 | 15MCA39 | Bridge course (Lateral Entry) | MNC | | | | | | 50 |

Certification Courses: 2-credits

- Two certifications are compulsory and need to be completed before start of 6th semester.
- Choose certifications, which have industrial acceptance.
- Students have to submit the certificates with valid score of the certifications they have completed to the department during 6th semester. **This is mandatory for the award of the credits and degree.**
- These certifications are evaluated by a panel formed at college level during 6th semester for the award of 2 credits.

CIE: Continuous Internal Evaluation SEE: Semester End Examination L: Lecture T: Tutorial P: Practical
CC: Core Course CF: Compulsory Foundation FE: Foundation Elective MNC: Mandatory Non-Credit
Computer Networks (Theory)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA31</th>
<th>Credits</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>CF</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>4-0-0</td>
<td>SEE Marks</td>
<td>100 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives
1. Providing a clear understanding of the basics of Computer Networks and its applications in fast evolving technological world
2. Exposing the real world applications using Computer Networks
3. Distinguishing different types of networks
4. Studying the different layers in TCP/IP and OSI reference model with their functionalities and services provided in networking
5. Developing an intuitive understanding of the basic networking concepts, protocol design implementation, and performance issues
6. Studying various network services and network management issues
7. Enlightening the dynamic and evolving field of networking which will make them use the networking concepts and its utility in today's fast changing networking environment

Pre-requisites:
1. Basic knowledge of computer and logic building capabilities.
2. Knowledge of data representation and Data Structures

Unit – I
Introduction:
Uses of Computer Networks, Classification of Computer Networks, Network Hardware, Network Software, Reference Models, Example Networks
Self-learning topics: Network Standardization

Unit – II
Physical Layer:
Theoretical Basis for Data Communication, Guided Transmission Media, Wireless Transmission, Digital Modulation and Multiplexing
Self-learning topics: The Mobile Telephone System

Unit – III
Data Link Layer and Medium Access Control Layer:
Self-Learning Topics: Multiple Access Protocols

Unit – IV
Network Layer:
Network layer design issues, Routing Algorithms, Congestion Control Algorithms, Quality of Service, Internetworking, internetworking and The Network Layer in the internet
Unit – V
10 Hours

Transport Layer and Application Layer:
The transport services, Elements of Transport Protocols, congestion control, The Internet Transport Protocols: TCP, UDP.

DNS-Domain Name System, Email, Introduction to Streaming Audio and Video

Self learning topics: WWW, Content Delivery

Books

Course Outcome (COS)
At the end of the course, the student will be able to

<table>
<thead>
<tr>
<th>Bloom’s Level</th>
<th>1. Build proficient knowledge of computer networking</th>
<th>L 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Develop models using Networking Protocols</td>
<td>L 3</td>
</tr>
<tr>
<td></td>
<td>3. Distinguish between different types of Network topologies</td>
<td>L 4</td>
</tr>
<tr>
<td></td>
<td>4. Evaluate different performance issues related to networking</td>
<td>L 5</td>
</tr>
<tr>
<td></td>
<td>5. Explain Functionalities and Working of networking devices</td>
<td>L 5</td>
</tr>
</tbody>
</table>

Program Outcome of this course (POs)

<table>
<thead>
<tr>
<th>PO No.</th>
<th>Postgraduates will demonstrate knowledge of mathematics, computer applications, and management</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Postgraduates will develop confidence for self-education and ability for life-long learning</td>
</tr>
<tr>
<td>10</td>
<td>Postgraduates can participate and succeed in competitive examinations</td>
</tr>
</tbody>
</table>

Course delivery methods
1. Lecture
2. Power-Point Presentation
3. Videos

Assessment methods
1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE : 20
Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.
Object Oriented Programming-2 (Java) (Theory)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA32</th>
<th>Credits</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>CC</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>3-1-0</td>
<td>SEE Marks</td>
<td>100 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Providing the basics of Java Programming Language
2. Imparting the knowledge of various OOPS concepts and its implementation in Java
3. Educating the key aspects of Java like security, robustness, and platform independence
4. Providing emphasis on the strengths of Java Language like Multithreading, Networking, Generics, Applets, and File handling
5. Understanding how to design and implement standalone applications and to create and handle event-driven GUI using Swing components; and implement I/O functionality to read from and write to text files

Pre-requisites:

1. A course on computer programming language (MCA14).
2. A course on object oriented programming-1 (MCA24).

Unit – I

11 Hours

Introduction to Java, Program Control Statements, arrays and Strings in Java:

The basic branching statements, and looping statements, break and continue.

Arrays, Multidimensional Arrays, Alternative Array Declaration Syntax, Assigning Array References, Using the Length Member, For-Each Style for Loop. String Fundamentals - String, String Buffer.

Self-Learning Topics: String Builder classes

Unit – II

11 Hours

Class Fundamentals, inheritance and interfaces:

Inheritance Basics, Member Access and Inheritance, Constructors and Inheritance, Using super to Call Superclass constructors, Using super to Access Superclass Members, Method Overriding, Overridden Methods support polymorphism, need for Overridden Methods, Using Abstract Classes, Using final.

Interface Fundamentals, Creating an Interface, Implementing an Interface, Using Interface References, Implementing Multiple Interfaces

Unit – III

11 Hours

Exceptions, IO & file handling in Java:

The Exception Hierarchy, Exception Handling Fundamentals, using Multiple catch clauses, User defined exception - Throwing an Exception, A Closer look at Throwable, using finally.

Self-Learning Topics: Serialization, Stream Benefits.
Unit – IV

Packages, Multithreaded Programming, Generics:
Package Fundamentals, Packages and Member Access, Importing Packages
Multithreading fundamentals, The Thread Class and Runnable Interface, Creating Thread, Thread Priorities, Synchronization, using Synchronization Methods, The Synchronized Statement, Thread Communication using notify(), wait() and notify All(), suspending, Resuming and stopping Threads.
Generics Fundamentals, Bounded Types, Generic Methods, Generic Constructors.

Self-Learning Topics: Generic Restrictions

Unit – V

Applets, Swing Fundamentals and Networking with Java.net:
Applet basics, A complete Applet Skeleton, Applet Initialization and Termination, A key Aspect of an Applet Architecture, Requesting Repainting, using the status window, Passing parameters to Applets.
The origin and Design philosophy of swing, Components and containers, Layout managers,
A first simple swing Example, Event Handling,
Networking fundamentals, The Networking classes and Interfaces, The InetAddress class, The Socket Class, The URL class, The URLConnection Class, The Http, URL Connection Class

Self-learning topics: Exploring Swing Controls-JLabel and ImageIcon, The Swing Buttons, Trees

Books

Course Outcome (COs)

At the end of the course, the student will be able to

1. List and demonstrate the implementation of key features of Object Oriented Programming
 Bloom’s Level L 1, L 2
2. Apply the exceptions handling, multithreading, and file handling mechanisms in software development using Java technology
 L 3
3. Design GUI for desktop based applications using swings and Internet based applet applications using Applet/ JApplet
 L 6
4. Develop network based applications using Networking classes
 L 6

Program Outcome of this course (POs)
1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
 PO No. 1
2. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
 3
3. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications
 4
4. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains
 5
5. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications
 6
6. Postgraduates will be able to communicate effectively in both verbal and written form
 8
7. Postgraduates can participate and succeed in competitive examinations
 11
Course delivery methods
1. Lecture
2. Power-Point Presentation
3. Videos

Assessment methods
1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE: 20

Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.
Software Engineering (Theory)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA33</th>
<th>Credits</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>CC</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>4-0-0</td>
<td>SEE Marks</td>
<td>100 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives
1. Providing a clear understanding of Software Engineering, Software Product Development Phases and its applications in real world
2. Understanding recent trends in Software Engineering like extreme programming and evolutionary methods, Use of Component Based Software Engineering
3. Applying testing techniques, viz. black box and white box testing, testing tools and methodology and analyze modeling techniques
4. Providing the basics of analytical skills to justify planning methodology for software development
5. Extracting information regarding software development, planning, modeling, implementation and testing a software product

Unit – I 12 Hours
Overview & Software Process & Agile Software Development
Software Process models: waterfall, incremental development, reuses oriented, Process activities; Coping with change, The rational Unified process. Agile methods, Plan-driven and agile Development, Extreme Programming, Agile project management
Self-Learning Topics: Scaling agile methods

Unit – II 10 Hours
Requirements Engineering, System Modeling, Architectural Design and implementation

Unit – III 10 Hours
Component-based software engineering & Distributed Software engineering
Components and component model, CBSE process, Component composition. Distributed system issues, Client-server computing, Architectural patterns for distributed systems
Self-Learning Topics: Software as a service.
Unit – IV 10 Hours

Planning a software Project
Process planning, Effort estimation, Project scheduling and staffing, Software configuration management plan, Quality plan, Risk Management, Project monitoring plan.

Self-Learning Topics: Generic Restrictions

Unit – V 10 Hours

Software testing

Books
5. IEEE/ ACM code of software engineering ethics, case studies

Course Outcome (COs)
At the end of the course, the student will be able to

<table>
<thead>
<tr>
<th>Bloom’s Level</th>
<th>COs</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 2</td>
<td>Illustrate ethical responsibilities of software engineer and extend IEEE/ACM code of software engineering ethics with case studies</td>
</tr>
<tr>
<td>L 5</td>
<td>Appreciate Software Process models: Waterfall, Incremental Development, Reuses Oriented, Process Activities: Coping with change, and The rational Unified Process</td>
</tr>
<tr>
<td>L 5</td>
<td>Estimate properties of CBSE</td>
</tr>
<tr>
<td>L 5</td>
<td>Assess risk involved in planning a software project</td>
</tr>
<tr>
<td>L 1, L 4</td>
<td>Define Functional and Non-functional requirements and analyze Software Requirements Document & Requirements Specification</td>
</tr>
<tr>
<td>L 2</td>
<td>Summarize Requirements Engineering Processes, Requirement Elicitation and Analysis, Requirements Validation, and Requirements Management</td>
</tr>
<tr>
<td>L 4</td>
<td>Classify distributed software engineering methods for client server computing</td>
</tr>
<tr>
<td>L 4</td>
<td>Compare System Models</td>
</tr>
</tbody>
</table>

Program Outcome of this course (POs)

<table>
<thead>
<tr>
<th>PO No.</th>
<th>POs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Postgraduates will demonstrate knowledge of mathematics, computer applications, and management</td>
</tr>
<tr>
<td>2</td>
<td>Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems</td>
</tr>
<tr>
<td>3</td>
<td>Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data</td>
</tr>
<tr>
<td>4</td>
<td>Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications</td>
</tr>
<tr>
<td>5</td>
<td>Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains</td>
</tr>
<tr>
<td>6</td>
<td>Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications</td>
</tr>
</tbody>
</table>
7. Postgraduates will demonstrate knowledge of professional and ethical responsibilities
8. Postgraduates will be able to communicate effectively in both verbal and written form
9. Postgraduates will show the understanding of impact of engineering solutions on the society as a successful entrepreneur or IT professional
10. Postgraduates will develop confidence for self education and ability for life-long learning
11. Postgraduates will demonstrate research-based knowledge and research methods for addressing current issues in research trends

<table>
<thead>
<tr>
<th>Course delivery methods</th>
<th>Assessment methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lecture</td>
<td>1. Internal Assessment Test</td>
</tr>
<tr>
<td>2. Power-Point Presentation</td>
<td>2. Quiz</td>
</tr>
<tr>
<td>3. Videos</td>
<td>3. Assignment/Seminar/Project</td>
</tr>
</tbody>
</table>

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA tests is compulsory.
- Minimum marks required to qualify for SEE: 20

Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):

1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. **Minimum marks required in SEE to pass: 20**
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Internet Web Programming (Theory)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA34</th>
<th>Credits</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>FE</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>4-0-0</td>
<td>SEE Marks</td>
<td>100 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Understanding Advanced Web tools and providing skills required to build and maintain server sites on the web
2. Exploring the wide variety of server side scripting technologies used in the construction of a website
3. Understanding the tools and techniques that may be used for the design and development of dynamic web

Pre-requisites:
Course on Web Programming (MCA12).

Unit – I 10 Hours

Introduction to jQuery
Introducing jQuery, jQuery fundamentals, Creating the wrapped element set, Bringing pages to life with jQuery, Understanding the browser event models, The jQuery Event Model, Sprucing up with animations and effects

Unit – II 10 Hours

Introduction to PHP and Building Web applications with PHP:
Origins and uses of PHP, Overview of PHP, General syntactic characteristics, Primitives, operations and expressions, Output, Control statements, Arrays, Functions, Pattern matching, Form handling, Files, Tracking users, cookies, sessions, Using database
Self-Learning Topics: Handling XML

Unit – III 10 Hours

Introduction to Ruby and Introduction to Rails
Origins and uses of Ruby, Scalar types and their operations, Simple input and output, Control statements, Arrays, Hashes, Methods, Classes, Code blocks and iterates, Pattern matching, Overview of Rails, Document requests, Processing forms, Layouts. Rails applications with Databases
Self-Learning Topics: File Handling with Ruby

Unit – IV 10 Hours

Web 2.0 and Web Services:
What is Web 2.0? Folksonomies and Web 2.0, Software as a Service (SaaS), Data and Web 2.0, Convergence, Iterative development, Rich User experience, Multiple Delivery Channels, Social Networking. Web Services: SOAP, RPC Style SOAP, Document style SOAP. WSDL, REST services, JSON format, What is JSON? Array literals, Object literals, Mixing literals, JSON Syntax, JSON Encoding and Decoding.
Self-Learning Topics: JSON versus XML
Unit – V 12 Hours

D3.js (Data Driven Documents): Data visualization tool for web apps

Books
4. Francis Shanahan: Mashups, Wiley India, 2012
5. Mike Dewar: "Getting Started with D3": O'Reilly Media, 2012

Course Outcome (COs)
At the end of the course, the student will be able to

1. **Describe** several tools and/or techniques involved in developing professional level Websites
 Recognize one or more of the tools deemed appropriate for a given task well enough to deploy and utilize those tools in implementing solutions to specific problems and **evaluate** the effectiveness of those solutions
2. **Demonstrate** an understanding of the web and related delivery systems
3. **Demonstrate** an understanding of the role of CGI scripting all aspects of IT
4. **Demonstrate** an understanding of the basic principles of Perl programming capabilities
5. **Apply** web technology tools effectively in the web development
6. **Compare** and **contrast** those tools and/or techniques while analyzing their appropriateness for solving specific problems.
7. **Appraise** the importance of PHP and its use as a server side scripting language

Program Outcome of this course (POs)
1. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
2. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains
3. Postgraduates will demonstrate knowledge of professional and ethical responsibilities

Course delivery methods
1. Lecture
2. Power-Point Presentation
3. Videos

Assessment methods
1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project
Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

➢ Writing two IA test is compulsory.
➢ Minimum marks required to qualify for SEE : 20

Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.
MIS and E-COMMERCE (Theory)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course type</th>
<th>CIE Marks</th>
<th>Hours/week: L-T-P</th>
<th>SEE Marks</th>
<th>Total Hours:</th>
<th>SEE Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>15MCA35</td>
<td>04</td>
<td>FE</td>
<td>50 marks</td>
<td>4-0-0</td>
<td>100 marks</td>
<td>52</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives
1. Providing a clear understanding of Management Information Systems in Real world.
2. Representation of the solution in the form of E-commerce application
3. Exploring key challenges in Managing Information
4. Describing Lifecycle Components of Enterprise Resource Planning, Components, and Challenges

Pre-requisites:
A course on software engineering (MCA33).

Unit – I
Information and Knowledge, Introduction of MIS:
Information concepts, classification of information, methods of data and information collection, value of information, information: A quality product, General model of a human as information processor, Knowledge.
MIS: Concept, Definition, Role of the MIS, Impact of MIS, MIS and the user, Management as a control system, MIS support to the management, Management effectiveness and MIS,

Unit – II
Decision Making and DSS, Electronic Business systems:
Decision making concepts; decision making process, decision-making by analytical modeling, Behavioral concepts in decision making, organizational decision-making, Decision structure, DSS components, Management reporting alternatives.
Enterprise business system – Introduction, cross-functional enterprise applications, real world case, Functional business system, - Introduction, marketing systems, sales force automation, CIM, HRM, online accounting system
Self-Learning Topics: Self-Learning Topics:
Customer relationship management, ERP, Supply chain management (real world cases for the above

Unit – III
Client Server Architecture and E-business Technology, Introduction to E-Commerce:
Course overview; Introduction to e-commerce, E-commerce Business Models and Concepts, E=Commerce Infrastructure: The Internet and World Wide Web, Web design, JavaScript Internet Information Server (IIS); Personal Web Server (PWS),

Unit – IV
E-Commerce techniques and Issues
Introduction to Active Server Pages (ASP), Building an E-Commerce Web Site, E-Commerce Payment Systems, E-Commerce Marketing Techniques, Building product catalogue, Search product catalogue, Web Spider and search agent, Ethical
Self-Learning Topics: Social and Political Issues in E-commerce
Unit – V
10 Hours

Internet Communication

Books

Course Outcome (COs)
At the end of the course, the student will be able to

1. Appraise fundamental knowledge of managing information systems
2. Compare Commerce Techniques and Issues with Internet Communication
3. Inspect the real world enterprise resource planning system development
4. Evaluate development of ecommerce web sites
5. Develop proficient knowledge of supply chain management systems in organization

Bloom’s Level

L 5
L 4
L 4
L 6
L 6

Program Outcome of this course (POs)

1. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications
2. Postgraduates will demonstrate knowledge of professional and ethical responsibilities
3. Post graduates will develop confidence for self-education and ability for life-long learning

PO No.
4
7
10

Course delivery methods

1. Lecture
2. Power-Point Presentation
3. Videos

Assessment methods

1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

➢ Writing two IA test is compulsory.
➢ Minimum marks required to qualify for SEE : 20

Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.
Scheme of Semester End Examination (SEE):

1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. **Minimum marks required in SEE to pass: 20**
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Course Code: 15MCA36 Credits: 2
Course type: CC CIE Marks: 50
Hours/week: L-T-P: 0-0-1 SEE Marks: 50
Total Hours: 42 SEE Duration: 3 Hours for 50 Marks

Course learning objectives
1. Providing a clear understanding of network simulators
2. Introducing the basic design and implementation of various types of network topologies
3. Understanding the four major concepts: data communications, networking, protocols and its standards, and networking models
4. Giving an insight of LAN and Wireless LAN with an exposure of using network simulators like NS2 / NS3
5. Using higher programming languages like C/C++ to learn and explore the implementation of error detection codes, routing algorithms, TCP/IP sockets and congestion control mechanisms

Pre-requisites:
Students must have the knowledge of the following topics:
2. Knowledge of C/ C++ programming constructs and should be able to write basic C / C++ programs.
3. Knowledge of UNIX / Linux Operating system.
4. Data structures

Laboratory Exercises:

SIMULATION EXERCISES

The following experiments shall be conducted using network free and open source software simulators like NS2 / NS3 could be used. If NS2 is used ‘tcl’ scripting should be introduced. If NS3 is used C++ with PYTHON has to be introduced during first two weeks of the labs:

Implement the following concepts in NS2 / NS3 (6 Experiments):
Designing a network with various node and line properties and observing the network behavior, Buffer capacity designs, LAN designs, Bottleneck networks, flow and congestion control, Routing algorithms, Wireless mobile experiments.

Assumptions to be made by the student for the TCL programs for the above exercises:
Packet size, bandwidth of a link, propagation delay between the links, packets generated interval time, units for start time and end time of the traffic, packet discard strategy, type of application that uses TCP and UDP and total simulation time

PROGRAMMING EXERCISES

Implement the following concepts in C / C++ (4 Experiments):
Error detecting codes, Routing algorithms, TCP/IP sockets for client/server program error detection/correction techniques, congestion control algorithms.

NOTE: In the examination, any one problem has to be asked from above EXERCISES. The choice must be based on random selection from the entire lots.
Books

Course Outcome (COs)
At the end of the course, the student will be able to

1. Identify and utilize NS2 simulator or equivalent simulators
2. Identify and explain the architecture of network topologies and concepts
3. Utilize Grep command or AWK script to extract features from the trace file to determine the various Networking factors
4. Develop knowledge to write TCL script, understand linking of nodes, agents, and to connect application protocol on them
5. Construct Network Simulations using NS2 or equivalent simulators in world scenarios in a project-based approach
6. Analyze wired and wireless topology with features like trace files, Xgraph, NAM of NS2
7. Analyze and design working of network protocols
8. Plan a simulation program for given network scenario

Program Outcome of this course (POs)

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems
3. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
4. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications.
5. Postgraduates will develop confidence for self education and ability for life-long learning

Assessment methods
1. Internal Lab Test
2. Conduction of experiments in regular lab
3. Journal write-up
Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Conduct of the lab</th>
<th>Journal submission</th>
<th>Lab test</th>
<th>Attendance</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks:</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Submission and certification of lab journal is compulsory to qualify for SEE.
- Minimum marks required to qualify for SEE: 25

Scheme of Semester End Examination (SEE):

1. It will be conducted for 50 marks of 3 hours duration.
2. Viva-voce shall be conducted for individual student and not in a group.
3. Minimum marks required in SEE to pass: 20
4. Initial write up 20 marks 50 marks
 Conduct of experiments 20 marks
 Viva-voce 10 marks
5. NOTE: Change of program during lab examinations is not permitted
Object Oriented Programming-2 (Java) Laboratory (Lab)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA37</th>
<th>Credits</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>CC</td>
<td>CIE Marks</td>
<td>50</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>0-0-1</td>
<td>SEE Marks</td>
<td>50</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>42</td>
<td>SEE Duration</td>
<td>3 Hours for 50 Marks</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Providing a clear understanding of Object Oriented (OO) concepts/philosophy and the major aspects of software development with emphasis to be given on implementing
2. Imparting the knowledge of implementing Object Oriented key concepts like ADT/Encapsulation, Inheritance, Polymorphism etc
3. Providing an insight on designing and developing software with requirements such as multithreading, GUI based applications, and network based
4. Providing a platform for learning advanced features of Java Language

Pre-requisites:
A course on computer programming language (MCA14).

List of experiments

Laboratory Exercises:
The following experiments shall be conducted using JDK latest version using text editor and executed on command prompt. GUI concepts can be implemented using IDE.

Implement 8 programs on the following concepts:
Polymorphism (Overloading and overriding), dynamic method dispatch (interfaces), multithreading and inter-thread communications, multithreading with priorities, packages with member of different access levels, exception handling, File (FileInputStream & FileOutputStream), to handle TCP/IP or Datagram Socket Connection.

Implement 2 programs on the following concepts using IDE:
Applet program with user interactions by Keyboard / mouse and a simple swing GUI interface.

Books

Course Outcome (COs)

At the end of the course, the student will be able to

1. **Apply** built-in Classes like String, Enumerations, Arrays, and Generic Classes etc
 Bloom’s Level L 3
2. **Apply** Object Oriented concepts like Classes, Objects, Inheritance and Polymorphism in software design and development
 Bloom’s Level L 3
3. **Design and build** robust systems with event handling and multithreading concepts in problem solving
 Bloom’s Level L 6
4. **Develop** GUI based systems using applets and Swings components
5. **Design and develop** network based applications using Network Classes

Program Outcome of this course (POs)

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
2. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
3. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications

Assessment methods

1. Internal Lab Test
2. Conduction of experiments in regular lab
3. Journal write-up

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Conduct of the lab</th>
<th>Journal submission</th>
<th>Lab test</th>
<th>Attendance</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks:</td>
<td>50</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Submission and certification of lab journal is compulsory to qualify for SEE.
- Minimum marks required to qualify for SEE: 25

Scheme of Semester End Examination (SEE):

1. It will be conducted for 50 marks of 3 hours duration.
2. Viva-voce shall be conducted for individual student and not in a group.
3. Minimum marks required in SEE to pass: 20
4. Initial write up | 20 marks | 50 marks |
 Conduct of experiments | 20 marks | |
 Viva-voce | 10 marks |
5. **NOTE:** Change of program during lab examinations is not permitted

Internet Web Programming Laboratory (Lab)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>15MCA38</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>CIE Marks</th>
<th>SEE Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>50</td>
<td>3 Hours for 50 Marks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hours/week: L-T-P</th>
<th>SEE Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0-1</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Hours:</th>
<th>SEE Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>3 Hours for 50 Marks</td>
</tr>
</tbody>
</table>

Course learning objectives
1. Understanding advanced web tools and inculcating the skills required to build and maintain server sites on the web
2. Exploring a wide variety of technologies used in the construction of website
3. Understanding the tools and techniques that may be used for the design and development of dynamic web

Pre-requisites:
Course on Web Programming (MCA12) and Web Programming Laboratory (MCA17).

List of experiments
Maximum 6 exercise scan be framed on the following topics:
jQuery, PHP, Database access with PHP and mysql, Ruby on Rails applications,

Mini Project:
Develop a web application project using the languages and concepts learnt in the theory with a good look and feel effects. Student can use any web technologies and frameworks and databases.

Coding Practice
1. Use of Good Programming practices: Declaration of variables, Indentation, Documentation, Simplicity of logic, Efficiency of logic, uniformity etc.
2. Generic and Reusable code.
3. Inclusions of exceptional cases. Better usability
4. Building web applications with Perl, PHP.

Note:
1. A team of maximum two students must develop the mini project. However, during the examination, each student must demonstrate the project individually.
2. The team must submit a brief project report (25-30 pages) that must include the following
 a. Introduction
 b. Requirement Analysis
 c. Software Requirement Specification
 d. Analysis and Design
 e. Implementation
 f. Testing Conclusion
 g. References
3. The report must be evaluated for 10 Marks. Demonstration and Viva for 15 Marks.

Instructions:
1. In the examination, one exercise out of 5 to be asked for 25 marks.
2. The mini project has to be evaluated for 25 marks.
Project report duly signed by the Guide need to be submitted during the examination.

Books
Course Outcome (COs)

At the end of the course, the student will be able to

1. **Describe** several tools and/or techniques involved in developing Professional Level Web sites
2. **Demonstrate** an understanding of the web and related delivery systems
3. **Demonstrate** an understanding of the role of CGI scripting in aspects of IT
4. **Apply** web technology tools effectively in the web development
5. **Demonstrate** an understanding of the basic principles of Perl programming capabilities
6. **Compare** and **contrast** the tools and/or techniques by analyzing their appropriateness for solving specific problems
7. **Recognize** one or more of the tools deemed appropriate for a given task well enough to deploy and utilize those tools in implementing solutions to specific problems; and evaluate the effectiveness of those solutions
8. **Appraise** the importance of PHP and its use as a server side scripting language

Program Outcome of this course (POs)

1. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
2. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains
3. Postgraduates will demonstrate knowledge of professional and ethical responsibilities

Assessment methods

1. Internal Lab Test
2. Conduction of experiments in regular lab
3. Journal write-up

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Conduct of the lab</th>
<th>Journal submission</th>
<th>Lab test</th>
<th>Attendance</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Submission and certification of lab journal is compulsory to qualify for SEE.
- Minimum marks required to qualify for SEE: 25

Scheme of Semester End Examination (SEE):

1. It will be conducted for 50 marks of 3 hours duration.
2. **Viva-voce shall be conducted for individual student and not in a group.**
3. **Minimum marks required in SEE to pass:** 20
4. **Initial write up:** 20 marks
 - Conduct of experiments: 20 marks
 - Viva-voce: 10 marks
4. **Total:** 50 marks

NOTE: Change of program during lab examinations is not permitted
AUDIT COURSE (Theory)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA39</th>
<th>Credits</th>
<th>NIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>MNC</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>--</td>
<td>SEE Marks</td>
<td>--</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>--</td>
<td>SEE Duration</td>
<td>--</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Providing knowledge of fundamentals of DM, DS, OOP, DBMS & SP

Pre-requisites:
Basic knowledge of related topics

Unit – I

10 Hours

Fundamentals of Discrete Mathematics

Unit – II

8 Hours

Essentials of Data structures: Pointers, structures, Searching: Sequential search, binary search, Binary Tree search, Exchange sort: Bubble sort, Quick sort. Selection sort and Tree sorting: Straight, selection sort, Binary tree sorts, sorting using a heap. Insertion sorts: Simple Insertion, Shell sort, Merge sorts. Tree Searching: Insertion into a Binary search tree, Deleting from a BST

Unit – III

10 Hours

Essentials of DBMS: Characteristics of Database approach; Actors on the screen; Data models, schemas and instances; Three-schema architecture and data independence; Models for Database Design; An Example Database Application; Entity Types, Entity Sets, Attributes and Keys; Relationship types, Relationship Sets, Roles and Structural Constraints; Weak Entity Types; Refining the ER Design; ER Diagrams, Naming Conventions and Design Issues; Relationship types of degree higher than two. Relational Model Concepts; Relational Model Constraints and Relational Database Schemas; Update Operations, Transactions and dealing with constraint violations; Relational Algebra: Unary Relational Operations: SELECT and PROJECT; Relational Algebra Operations from Set Theory; Binary Relational Operations: JOIN and DIVISION; Additional Relational Operations; Examples of Queries in Relational Algebra; Relational Database Design Using ER-to-Relational Mapping

Unit – IV

8 Hours

Fundamentals of OOP: Introduction to Class specification, Class Objects, access members, defining member functions, data hiding, constructors, destructors, parameterized constructors, static data members, functions, passing objects as arguments, returning objects, friend functions & classes, arrays of objects, Dynamic objects – Pointers to objects. function overloading, recursive functions, function templates and Class templates, Operator overloading using friend functions such as ++, --, [] etc. Base Class, Types of Inheritance, Inheritance & protected members, protected base class inheritance, inheriting multiple base classes, Constructors, Destructors & Inheritance. Passing parameters to base Class Constructors, Granting access, Virtual base classes, Virtual function, pure virtual functions, abstract classes, exception handling
Unit – V

Books
2. Yedidyah Langsam and Moshe J.Augenstein and Aaron M. Tenenbaum, Data structures using C , PHI. Reference books

Course Outcome (COs)

At the end of the course, the student will be able to

1. Analyze set theory and operations
2. Analyze & implement searching and sorting techniques
3. Access, analyze and construct various operations on classes objects and related operations on data
4. Define and analyze data models and operations on it
5. Appraise & analyze

Program Outcome of this course (POs)

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems
3. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
4. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications
5. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains
6. Postgraduates will develop confidence for self-education and ability for life-long learning

PO No.
1
2
3
4
5
10

Course delivery methods
1. Lecture
2. Power-Point Presentation
3. Videos

Assessment methods
1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project
Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE: 20

Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Bloom’s Taxonomy of Learning Objectives

Bloom’s Taxonomy in its various forms represents the process of learning. It was developed in 1956 by Benjamin Bloom and modified during the 1990’s by a new group of cognitive psychologists, led by Lorin Anderson (a former student of Bloom’s) to make it relevant to the 21st century. The revised taxonomy given below emphasizes what a learner “Can Do”.

<table>
<thead>
<tr>
<th>Lower order thinking skills (LOTS)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 Remembering</td>
<td>Retrieve relevant knowledge from memory.</td>
</tr>
<tr>
<td>L2 Understanding</td>
<td>Construct meaning from instructional material, including oral, written, and graphic communication.</td>
</tr>
<tr>
<td>L3 Applying</td>
<td>Carry out or use a procedure in a given situation – using learned knowledge.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Higher order thinking skills (HOTS)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L4 Analyzing</td>
<td>Break down knowledge into its components and determine the relationships of the components to one another and then how they relate to an overall structure or task.</td>
</tr>
<tr>
<td>L5 Evaluating</td>
<td>Make judgments based on criteria and standards, using previously learned knowledge.</td>
</tr>
<tr>
<td>L6 Creating</td>
<td>Combining or reorganizing elements to form a coherent or functional whole or into a new pattern, structure or idea.</td>
</tr>
</tbody>
</table>
KARNATAK LAW SOCIETY’S
GOGTE INSTITUTE OF TECHNOLOGY
UDYAMBAG, BELAGAVI-590008
(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)
(APPROVED BY AICTE, NEW DELHI)

Department of Master of Computer Applications (M.C.A.)

Scheme and Syllabus (2017 Scheme)
4th Semester Master of Computer Applications (M.C.A.)
INSTITUTION VISION

Gogte Institute of Technology shall stand out as an institution of excellence in technical education and in training individuals for outstanding caliber, character coupled with creativity and entrepreneurial skills.

MISSION

To train the students to become Quality Engineers with High Standards of Professionalism and Ethics who have Positive Attitude, a Perfect blend of Techno-Managerial Skills and Problem solving ability with an analytical and innovative mindset.

QUALITY POLICY

- Imparting value added technical education with state-of-the-art technology in a congenial, disciplined and a research oriented environment.
- Fostering cultural, ethical, moral and social values in the human resources of the institution.
- Reinforcing our bonds with the Parents, Industry, Alumni, and to seek their suggestions for innovating and excelling in every sphere of quality education.

DEPARTMENT VISION

Successful Career and Entrepreneurship: The ability to employ modern computer languages, technologies, environments, and platforms in creating innovative career paths to be an entrepreneur, and a zest for higher studies.

MISSION

To train the graduates to become IT professionals having strong fundamental knowledge in the field of computer application with ethical values to meet increasing global challenges of ever evolving technologies.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

1. The graduates will be inculcated with **substantial** knowledge of mathematics, computer Science and its applications so that they become proficient in providing solutions to computing problems.
2. The graduates will be trained to develop the ability to analyze, model, design, implement system to meet specified requirements while considering real-world constraints.
3. The graduates will be provided with a platform to explore latest trends and technology; adequate training & opportunities to work as a team on multidisciplinary projects with effective communication skills and leadership qualities.
4. The graduates will be made aware of the benefits of life-long learning and will be introduced to professional ethics and codes of professional practice.
PROGRAM OUTCOMES (POs)

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management.
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems.
3. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data.
4. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications.
5. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains.
6. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications.
7. Postgraduates will demonstrate knowledge of professional and ethical responsibilities.
8. Postgraduates will be able to communicate effectively in both verbal and written form.
9. Postgraduates will show the understanding of impact of engineering solutions on the society as a successful entrepreneur or IT professional.
11. Postgraduates can participate and succeed in competitive examinations.
12. Postgraduates will use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PROGRAM SPECIFIC OUTCOMES (PSOs)

1. Professional Skills: The ability to understand, analyze and develop computer programs in the areas related to algorithms, system software, simulation, software design, web design, big data analytics, and networking for efficient design of computer-based systems of varying complexity.
2. Problem-Solving Skills: The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality applications for business success.
3. Successful Career and Entrepreneurship: The ability to employ modern computer languages, technologies, environments, and platforms in creating innovative career paths to be an entrepreneur, and a zest for higher studies.
Scheme of Teaching

IV Semester

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>L-T-P</th>
<th>Credits</th>
<th>Contact Hours</th>
<th>CIE Marks</th>
<th>SEE Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15MCA41</td>
<td>Analysis and Design of Algorithms</td>
<td>CC</td>
<td>3-1-0</td>
<td>4</td>
<td>5</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>15MCA42</td>
<td>Topics in Enterprise Architecture-1 (J2EE)</td>
<td>CC</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>15MCA43</td>
<td>Computer Graphics and Visualization</td>
<td>CC</td>
<td>3-1-0</td>
<td>4</td>
<td>5</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>15MCA44X</td>
<td>Elective – 1</td>
<td>GE</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>15MCA45X</td>
<td>Elective – 2</td>
<td>GE</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>15MCA46</td>
<td>Algorithms Laboratory</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>15MCA47</td>
<td>Topics in Enterprise Architecture-1 Laboratory (J2EE)</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>15MCA48</td>
<td>Computer Graphics Laboratory</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>15MCA49</td>
<td>Communicative English</td>
<td>CF</td>
<td>2-0-0</td>
<td>2</td>
<td>1</td>
<td>50</td>
<td>--</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td>20-2-3</td>
<td>28</td>
<td>32</td>
<td>450</td>
<td>400</td>
</tr>
</tbody>
</table>

CIE: Continuous Internal Evaluation
SEE: Semester End Examination
L: Lecture
T: Tutorial
P: Practical
CC: Core Course
GE: Generic Elective
CF: Compulsory Foundation

Elective Groups

Note: Students are advised to select any one subject from the following elective groups for Elective-1 and Elective-2 respectively.

Elective Group-1

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>441</td>
<td>Advanced Database Management Systems</td>
</tr>
<tr>
<td>2</td>
<td>442</td>
<td>UNIX System Programming</td>
</tr>
<tr>
<td>3</td>
<td>443</td>
<td>Cloud Computing</td>
</tr>
<tr>
<td>4</td>
<td>444</td>
<td>Advanced Computer Networks</td>
</tr>
<tr>
<td>5</td>
<td>445</td>
<td>Software Testing</td>
</tr>
<tr>
<td>6</td>
<td>446</td>
<td>Enterprise Resource Planning</td>
</tr>
<tr>
<td>7</td>
<td>447</td>
<td>Operations Research</td>
</tr>
</tbody>
</table>

Elective Group-2

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>451</td>
<td>Big Data Analytics</td>
</tr>
<tr>
<td>2</td>
<td>452</td>
<td>Finite Automata and Formal Languages</td>
</tr>
<tr>
<td>3</td>
<td>453</td>
<td>Software Architecture</td>
</tr>
<tr>
<td>4</td>
<td>454</td>
<td>Mobile Applications</td>
</tr>
<tr>
<td>5</td>
<td>455</td>
<td>Client-Server Computing</td>
</tr>
<tr>
<td>6</td>
<td>456</td>
<td>Principles of User Interface Design</td>
</tr>
<tr>
<td>7</td>
<td>457</td>
<td>Mobile Computing</td>
</tr>
</tbody>
</table>
Analysis and Design of Algorithms (Theory)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA41</th>
<th>Credits</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>CC</td>
<td>CIE Marks</td>
<td>50 Marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>3-1-0</td>
<td>SEE Marks</td>
<td>50 Marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives
1. Getting a clear understanding of algorithms.
2. Understanding concepts of parallel programming
3. Designing algorithms, manipulating algorithms, understanding algorithms, analyzing algorithms, comparing algorithms, and appreciating the working of an efficient algorithm
4. Focusing on the limitations of algorithmic power and how this limitation can be coped up by using design techniques like backtracking and branch-and-bound, and finally concludes with a discussion of few approximation algorithms
5. Developing analytical skills and problem-solving skills

Pre-requisites:
1. A basic knowledge of mathematics including mathematical induction.
2. Knowledge of graph theory

Unit – I 11 Hours
Introduction, Analysis of algorithmic efficiency:
Notion of Algorithm, Fundamentals of algorithmic problem solving, important problem types, fundamental data structures, Analysis Framework, Asymptotic Notations and Basic efficiency classes, Mathematical Analysis of Non-Recursive and Recursive Algorithms, Examples.

Unit – II 11 Hours
Brute Force, Divide and Conquer:
Selection Sort and Bubble Sort, Sequential Search and Brute Force String Matching, Introduction to divide and conquer technique, Merge Sort, Quick Sort, Binary Search, multiplication of large integers, Strassen’s Matrix Multiplication.
Self learning topics: Exhaustive Search for Travelling Salesman Problem, Knapsack Problem and Assignment Problem.

Unit – III 10 Hours
Decrease and Conquer, Space and Time Tradeoffs:
Insertion sort, Depth First Search, Breadth First Search, Topological Sorting, sorting by counting, Input Enhancement in string matching, Hashing.
Self learning topics: Johnson-Trotter algorithm for generating combinatorial objects.

Unit – IV 10 Hours
Dynamic Programming, Greedy Method:
Warshall’s Algorithm, Floyd’s Algorithm, 0/1 Knapsack, Greedy Knapsack Problem, Prim’s Algorithm, Kruskal’s Algorithm, Dijkstra’s Algorithm, Huffman Trees

Unit – V 10 Hours
Coping with Limitations of Algorithmic Power:
Lower-Bound Arguments, Decision Trees, P, NP, and NP-Complete Problems.
Backtracking: n - Queens’s problem, Hamiltonian Circuit Problem, Subset – Sum Problem.
Branch-and-Bound: Assignment Problem, Knapsack Problem, Traveling Salesperson Problem

Self learning topics: Approximation algorithms for NP hard problems

Books

Course Outcome (COs)
At the end of the course, the student will be able to

1. **Discuss** the general framework for analyzing algorithm efficiency. L1
2. **Discuss** general method to solve problems like Knapsack and Job sequencing with Deadlines L1
3. **Discuss** and **apply** different strategies for searching and sorting the elements in given list L1, L3
4. **Apply** different strategies like Dynamic Programming and Greedy Techniques to solve graphical problems L3
5. **Demonstrate** the mathematical analysis of recursive algorithms and non-recursive algorithms with relevant examples L3

Program Outcome of this course (POs)

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management 1
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems 2
3. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data 3
4. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains 5
5. Postgraduates can participate and succeed in competitive examinations 11

Course delivery methods
1. Lecture
2. Power-Point Presentation
3. Videos

Assessment methods
1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/Course Seminar/Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE : 20
Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Topics in Enterprise Architecture-1 (J2EE) (Theory)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA42</th>
<th>Credits</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>CC</td>
<td>CIE Marks</td>
<td>50 Marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>4-0-0</td>
<td>SEE Marks</td>
<td>50 Marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course Learning Objectives

1. Understanding the core components of advanced Java programming language like JSP, Servlets, JDBC, Java Beans and EJB
2. Understanding the core components of Advanced Java technologies
3. Understanding and implementing Servlet life cycle and handling request headers, response headers, and status codes in servlets
4. Understanding JSP and life cycle of JSP with the advantages of JSP and make use of action tags, implicit objects, directive tags, and scriplet tags
5. Exploring JAR file and implementation of Annotations
6. Understanding Java Beans and API
7. Exploring database connectivity using JDBC connection API
8. Understanding types of EJB’s, life cycle of Server Side and Client Side EJB components

Pre-requisites: A course on Java Programming (15MCA32) and basic programming skills

Unit – I 12 Hours

Servlets
Servlet Structure, Servlet packaging, HTML building utilities, Lifecycle, Single Thread model interface, Handling Client Request: Form Data, Handling Client Request: HTTP Request Headers, Generating server Response: HTTP Status codes, Generating server Response: HTTP Response Headers, Handling Cookies, Session Tracking

Self Learning Topics: Servlet API

Unit – II 10 Hours

Java Server Pages
Overview of JSP Technology, Need of JSP, Benefits of JSP, Advantages of JSP, Basic syntax, Invoking java code with JSP scripting elements, Invoking java code from JSP, limiting java code in jsp, using jsp expressions, comparing servlets and jsp, writing scriptlets, scriplet example Using Scriptlets to make parts of jsp conditional, using declarations, declaration example.

Unit – III 10 Hours

Controlling the Structure of generated servlets
The JSP page directive, import attribute, session attribute, is Elignore attribute, buffer and auto flush attributes, info attribute, errorPage and is errorPage attributes, is Thread safe Attribute, extends attribute, language attribute, Including files and applets in jsp Pages, using java beans components in JSP documents.

Java Beans and Annotations
Java Beans, advantages java beans, properties of beans, java bean API, Creating Packages, Interfaces, JAR files and Annotations. The core java API package, New java. Lang Sub package, Built-in Annotations
Unit – IV
10 Hours

JDBC
Talking to Database, Types of JDBC, Essential JDBC program, JDBC Drivers, packages, Callable Statement, Statement Objects, using Prepared Statement JDBC in Action Result sets, Batch updates, Mapping, Basic JDBC data types, Advanced JDBC data types
Self learning topics: JDBC API, Stored procedure and stored function in DBMS

Unit – V
10 Hours

Introduction to EJB and Server side Components Model
Self learning topics: MVC (Model View Controller) Architecture

Books

Course Outcome (COs)
At the end of the course, the student will be able to

1. Develop web Related aspects through Servlets and Java Server Pages
2. Develop Applications, which are distributed in nature like banking applications through EJB
3. Demonstrate comprehension in fundamental topics of computing, including the intellectual core of computing, software design and development, algorithms, computer organization and architecture, and software systems
4. Develop many applications using JDBC to connect to a Database

Bloom’s Level
L2, L3

Program Outcome of this course (POs)

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
2. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
3. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications
4. Postgraduates will demonstrate an ability to analyze and build computer

PO No.
1
3
4
5
applications for multiple domains
Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications
Postgraduates will be able to communicate effectively in both verbal and written form
Postgraduates can participate and succeed in competitive examinations

<table>
<thead>
<tr>
<th>Course delivery methods</th>
<th>Assessment methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lecture</td>
<td>1. Internal Assessment Test</td>
</tr>
<tr>
<td>2. Power-Point Presentation</td>
<td>2. Quiz</td>
</tr>
<tr>
<td>3. Video</td>
<td>3. Assignment/Seminar/Project</td>
</tr>
</tbody>
</table>

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE: 20

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Computer Graphics and Visualization (Theory)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>15MCA43</td>
<td>04</td>
</tr>
<tr>
<td>Course type</td>
<td>CC</td>
</tr>
<tr>
<td>CIE Marks</td>
<td>50 Marks</td>
</tr>
<tr>
<td>Hours/week:</td>
<td>3-1-0</td>
</tr>
<tr>
<td>SEE Marks</td>
<td>50 Marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
</tr>
<tr>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives
1. Providing a clear understanding of computer graphics to give hands-on experience at developing interactive, real-time graphics applications using OpenGL
2. Familiarizing with tools that open up a whole new world of 3D visualization
3. Understanding all aspects of computer graphics such as writing application programs that generate graphical output
4. Understanding how the underlying graphics library and the hardware are implemented

Pre-requisites: Basic Mathematics and Geometrical concepts. A course on computer programming (15MCA14) and Object oriented programming-1 (15MCA24)

Unit – I
10 Hours
Introduction and Line Generation:
Types of computer graphics, Graphic Displays- Random scan displays, Raster scan displays, Frame buffer and video controller, Points and lines, Line drawing algorithms, Circle generating algorithms, Ellipse generation algorithms, Fill area primitives, Polygon fill areas, OpenGL polygon fill area functions, General scan line polygon fill algorithm, Fill methods for areas with irregular boundaries

Unit – II
10 Hours
Introduction to OpenGL:
Introduction to OpenGL, Coordinate reference frames, Specifying two dimensional world coordinate reference frame in OpenGL, OpenGL point functions, OpenGL line functions, OpenGL fill area attribute functions

Unit – III
10 Hours
Two Dimensional Transformations:
Basic transformation, Matrix representations and homogenous coordinates, composite transformations, Reflections and shearing, Affine transformations, OpenGL geometric transformation functions. Windowing and Clipping: Viewing pipeline, Viewing transformations, 2-D Clipping algorithms- Line clipping algorithms such as CohenSutherland line clipping algorithm, Liang Barsky algorithm, Line clipping against non-rectangular clip windows; Polygon clipping –Sutherland Hodgeman polygon clipping, Weiler and Atherton polygon clipping, Curve clipping, Text clipping.

Unit – IV
12 Hours
Three Dimensional Transformations:
3-D geometric primitves, 3-D Object representation, 3-D Transformation, The three dimensional viewing concepts, Three dimensional viewing pipeline, Three dimensional viewing coordinate parameters, Transformation from world to viewing coordinates, 3-D Clipping

Self-learning topics: Curves
Unit – V

Projections, Surfaces and Computer Animation:

Self-learning topics: Rendering, Animation using user interactions

Books

Course Outcome (COs)
At the end of the course, the student will be able to

Identify and explain the structure of OpenGL-API and describe the abstractions of OpenGL-API and demonstrate its use by writing simple 2D and 3D graphics applications that do not require user interaction
1. Classify the views used in classical viewing and demonstrate the techniques of computer viewing in application programs using functionalities of OpenGL
2. Illustrate the different Clip lines views and demonstrate the technique of Clip lines algorithm in application programs using functionalities of OpenGL
3. Identify the various applications of computer graphics and discuss the working of graphics system and its analogy with physical imaging systems. Identify the different graphics architectures
4. Construct a simple 2D graphics program using minimal OpenGL-API
5. Illustrate the basic tools of user interaction and animation defined in OpenGL-API
6. Design and develop simple interactive and animating graphics programs using the tools available in OpenGL-API
7. Demonstrate the mathematical abstractions of geometric objects and their graphical representations. Evaluate the mathematical abstractions for applying transformations on objects. Design, develop and implement the graphics application programs involving transformations using OpenGL-API
8. Construct the algorithms of graphics pipeline and the basic implementation strategies used in OpenGL

Bloom’s Level
L2, L3
L2
L2
L3, L6
L6
L2
L6
L2, L5, L6
L6
Program Outcome of this course (POs)

1. Post graduates will demonstrate knowledge of mathematics, computer applications, and management
2. Post graduates will demonstrate an ability to identify, formulate and solve engineering problems
3. Post graduates can participate and succeed in competitive examinations.

Course delivery methods

<table>
<thead>
<tr>
<th>Components</th>
<th>Lecture</th>
<th>Power-Point Presentation</th>
<th>Videos</th>
</tr>
</thead>
</table>

Assessment methods

<table>
<thead>
<tr>
<th>Components</th>
<th>Internal Assessment Test</th>
<th>Quiz</th>
<th>Assignment/Seminar/Project</th>
</tr>
</thead>
</table>

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE : 20

Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):

1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass:20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Algorithms Laboratory (Lab)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA46</th>
<th>Credits</th>
<th>02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>CC</td>
<td>CIE Marks</td>
<td>50 Marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>0-0-1</td>
<td>SEE Marks</td>
<td>50 Marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>42</td>
<td>SEE Duration</td>
<td>3 Hours for 50 marks</td>
</tr>
</tbody>
</table>

Course learning objectives
1. Understanding the application of various algorithms, design strategies to solve real-life problems like searching, sorting, string processing, graph problems, combinatorial problems, geometric problems and numerical problems
2. Exploring the capability to analyze the efficiency of the algorithm, compare and comments on the behavior of the algorithm, and appreciate the working of an algorithm
3. Finding means to develop analytical skills and problem-solving skills

Pre-requisites: A course on Computer programming language (15MCA14). Knowledge of basic mathematics and Graph Theory

Laboratory Exercises
Maximum 10 programs can be framed in the following concepts/strategies:
Recursion, Divide and conquer, Decrease and Conquer, Dynamic Programming, Backtracking, String matching, Greedy Technique

Books

Course Outcome (COs)

At the end of the course, the student will be able to

| Bloom’s Level |
|---------------|--------|
| L2 | L3 |
| L6 | |

1. **Explain** the fundamentals of algorithmic problem solving
2. **Explain and analyze** any given problem to derive at a best solution
3. **Apply** algorithmic strategies on different problems
4. **Assess** a given problem and derive at a solution by writing an efficient algorithm

Program Outcome of this course (POs)

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems
3. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
4. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains.
5. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications.

Assessment methods

1. Internal Lab Test
2. Conduction of experiments in regular lab
3. Journal write-up

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Conduct of the lab</th>
<th>Journal submission</th>
<th>Lab test</th>
<th>Attendance</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Submission and certification of lab journal is compulsory to qualify for SEE.
- **Minimum marks required to qualify for SEE: 25**

Scheme of Semester End Examination (SEE):

1. It will be conducted for 50 marks of 3 hours duration.
2. **Viva-voce shall be conducted for individual student and not in a group.**
3. **Minimum marks required in SEE to pass: 20**

4. Initial write up 20 marks
 Conduct of experiments 20 marks
 Viva-voce 10 marks
 Total: 50 marks

5. **NOTE: Change of program during lab examinations is not permitted**

Topics in Enterprise Architecture-1 Laboratory (Lab)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>15MCA47</td>
<td>02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>CIE Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>50 Marks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hours/week: L-T-P</th>
<th>SEE Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0-1</td>
<td>50 Marks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Hours:</th>
<th>SEE Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>3 Hours for 50 marks</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Understanding the importance of Java and Advanced Java technologies
2. Developing knowledge of distributed applications using advanced server side programming like JSP, Servlet, and Java Beans
3. Understanding the need and importance of NetBeans IDE to write, debug and execute Servlets, Server Pages, and EJB applications
4. Getting knowledge about Development of real time enterprise applications for any business purpose which will be very secure in nature

Pre-requisites: A course on Java programming language (MCA32)

Laboratory Exercises

Maximum 10 experiments can be framed on the following topics:
Servlet life Cycle, handling data from client(Client request), Servlet HTTP request Header. (Get () and Post() methods), Servlet cookies, JSP Scripting tags, All attributes of JSP Page directive tag, JSP Action tags(JSP: include, JSP: forward), JSP Using Java Bean class, JDBC.(Java Database Connectivity), JSP directive tags, (include, Page, taglib), EJB Application demonstrating Session Bean.

Note: Net beans IDE (Latest version), Specific/Generalized JAR files, Eclipse IDE may be used.

Books

Course Outcome (COs)

At the end of the course, the student will be able to

<table>
<thead>
<tr>
<th>Bloom’s Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3</td>
</tr>
<tr>
<td>L5</td>
</tr>
<tr>
<td>L3</td>
</tr>
<tr>
<td>L5</td>
</tr>
</tbody>
</table>

1. Write Applications in JSP and Servlets using NetBeans IDE
2. Develop and deploy Web Services on the Java platform
3. Build enterprise/distributed applications and systems using J2EE and J2SE in an enterprise/distributed environment
4. Develop and implement web related aspects using Servlets and JSP
5. **Develop** GUI based applications using Applet Components

Program Outcome of this course (POs)

<table>
<thead>
<tr>
<th>PO No.</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Postgraduates will demonstrate knowledge of mathematics, computer applications, and management</td>
</tr>
<tr>
<td>2</td>
<td>Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data</td>
</tr>
<tr>
<td>3</td>
<td>Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications</td>
</tr>
<tr>
<td>4</td>
<td>Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains</td>
</tr>
<tr>
<td>5</td>
<td>Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications</td>
</tr>
<tr>
<td>6</td>
<td>Postgraduates will be able to communicate effectively in both verbal and written form</td>
</tr>
<tr>
<td>7</td>
<td>Postgraduates can participate and succeed in competitive examinations</td>
</tr>
</tbody>
</table>

Assessment methods

1. Internal Lab Test
2. Conduction of experiments in regular lab
3. Journal write-up

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Conduct of the lab</th>
<th>Journal submission</th>
<th>Lab test</th>
<th>Attendance</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Submission and certification of lab journal is compulsory to qualify for SEE.
- **Minimum marks required to qualify for SEE:** 25

Scheme of Semester End Examination (SEE):

1. It will be conducted for 50 marks of 3 hours duration.

2. **Viva-voce shall be conducted for individual student and not in a group.**

3. **Minimum marks required in SEE to pass:** 20

4. Initial write up 20 marks

<table>
<thead>
<tr>
<th>Conduct of experiments</th>
<th>20 marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viva-voce</td>
<td>10 marks</td>
</tr>
</tbody>
</table>

5. **NOTE: Change of program during lab examinations is not permitted**

Computer Graphics Laboratory (Lab)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA48</th>
<th>Credits</th>
<th>02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>CC</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>0-0-1</td>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>42</td>
<td>SEE Duration</td>
<td>3 Hours for 50 marks</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Providing a clear understanding of the structure of OpenGL-API and its interface
2. Emphasizing on the syntax of graphics functions available from OpenGL library and to introduce the GLUT (Graphics Library Utility Toolkit) of OpenGL
3. Making the students acquainted with most common library functions of OpenGL for designing the graphics application programs
4. Gaining the in-depth knowledge of using the graphics functions of OpenGL and to design, develop, and execute the graphics programs using ‘C/C++’ language under Windows XP operating system
5. Understanding the techniques of designing and developing the graphics programs from the major topics of computer graphics involving both 2D and 3D objects

Pre-requisites: Basic Mathematics and Geometrical concepts.
A course on computer programming (15MCA14) and Object oriented programming-1

Laboratory Exercise

Maximum 10 experiments can be framed on the following topics:
OpenGL functions, graphics output primitive algorithms, boundary fill algorithm, 2D transformation, clipping, 3D transformation, animation.

Books

Course Outcome (COs)

At the end of the course, the student will be able to

1. Demonstrate the use of OpenGL line and circle drawing functions L2
2. Analyze the construction and display of animated object L4
3. Construct a graphic program in building simple 2D object transformation L6
4. Develop a basic graphics program using commonly used functions of OpenGL-API L6
5. Design a graphics program in building simple 3D objects transformation L6
6. Construct a graphic program for boundary fill algorithm L6
7. Propose the construction and display of clipping algorithm

Program Outcome of this course (POs)

1. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
2. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications
3. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains
4. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications

Assessment methods

1. Internal Lab Test
2. Conduction of experiments in regular lab
3. Journal write-up

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Conduct of the lab</th>
<th>Journal submission</th>
<th>Lab test</th>
<th>Attendance</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

➢ Submission and certification of lab journal is compulsory to qualify for SEE.
➢ Minimum marks required to qualify for SEE : 25

Scheme of Semester End Examination (SEE):

1. It will be conducted for 50 marks of 3 hours duration.
2. Viva-voce shall be conducted for individual student and not in a group.
3. Minimum marks required in SEE to pass: 20
4. Initial write up 20 marks
 Conduct of experiments 20 marks
 Viva-voce 10 marks
5. NOTE: Change of program during lab examinations is not permitted

Communicative English (Theory)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA49</th>
<th>Credits</th>
<th>02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>CF</td>
<td>CIE Marks</td>
<td>50 Marks</td>
</tr>
<tr>
<td>Hours/week:</td>
<td>L-T-P</td>
<td>SEE Marks</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>2-0-0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hours:</td>
<td>30</td>
<td>SEE Duration</td>
<td>--</td>
</tr>
</tbody>
</table>

Course learning objectives

1. To assist the students in developing necessary language skills in the areas like vocabulary, grammar, presentation and interactive communication.
2. To enable them to express their ideas coherently.
3. To help to comprehend and write effectively.
4. To aid them in understanding the importance of Verbal and Non-verbal Communication.

Pre-requisites:

- Basic knowledge of English Language.
- Conversant with Basic English Grammar.
- Ability to frame sentence in English.

Unit – I: Grammar and Vocabulary

1. Frame grammatically acceptable sentences.
2. Use every day words / commonly used words.

Self-learning topics: Improve their vocabulary by reading

Unit – II: Reading Skills

1. Comprehend and interpret the texts (passages, charts etc).
2. Use work place / business vocabulary.

Self-learning topics: Solve reading assignments from Cambridge BEC book.

Unit – III: Listening Skills

1. Interpret recorded audio-video scripts.
2. Make use of words and phrases related to people and the world.

Self-learning topics: Solve listening exercises from www.cambridge.org

Unit – IV: Speaking Skills

1. Interact effectively as an individual and also as a member in a team.
2. Design and formulate presentations.

Self-learning topics: Self-evaluation by recording their speech

Unit – V: Writing Skills

1. Write informative, analytical and persuasive essays.
2. Write formal communication.
Self-learning topics: Practice e-mail, memos, and report writing

Books
4. Prof. G.S. Mudambadithya, “Functional English”, Sapan- Bangalore,

Course Outcome (COs)
At the end of the course, the student will be able to

1. Define various grammatical concepts such as Articles, Prepositions, Subject-Verb Agreement, and Tenses.
2. Explain their ideas in their own words in English.
3. Interpret the given information or data in the form of reading or listening materials.
4. Distinguish among the various grammatical concepts like sentence patterns, sub-verb agreement, tenses etc.
5. Evaluate the grammatically acceptable sentences, and Defend their view-points.
6. Design and Formulate oral and written presentations.

Program Outcome of this course (POs)
1. It will help them to enhance their communicative skills.
2. It will help to enhance their ability to work in a group.
3. It will encourage them to interact confidently and effectively.
4. It will promote self-learning.

Course delivery methods
1. Lecture
2. Learnsoft Software
3. PPT
4. Vocabulary activities/games

Assessment methods
1. Individual speech
2. PPT (Group activity)
3. Writing assignment
4. Online Quiz

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Individual activity – Speech</th>
<th>Group Activity – Power Point Presentation</th>
<th>Writing Skills – Essay & Email/memo/report</th>
<th>Class Performance (Attendance)</th>
<th>Online Test</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks (25)</td>
<td>5</td>
<td>15</td>
<td>10</td>
<td>5</td>
<td>15</td>
<td>50</td>
</tr>
</tbody>
</table>

Continuous Internal Evaluation (CIE) is of 50 marks. It will be reduced to 25 marks for the calculation of SGPA and CGPA.
Elective Group-1
Advanced Database Management Systems

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA441</th>
<th>Credits</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>GE</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>4-0-0</td>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives
1. Providing a clear understanding of advanced topics and techniques in database systems, with a focus on the system and algorithmic aspects
2. Acquiring knowledge about advanced database with the concepts of storage, indexing, transaction management, structure, relational operators and query optimization
3. Emphasizing on survey of recent development and progress in selected areas. Topics include: query optimization, multimedia and time-series data management

Pre-requisites:
1. A course on Operating systems (15MCA23).
2. A course on Database management system (15MCA22).

Unit – I 12 Hours
Overview of Storage, Indexing, Disks and Files, Data on external storage; File organizations and indexing; Index data structures; Comparison of file organizations; Indexes and performance tuning Memory hierarchy; RAID; Disk space management; Buffer manager; Files of records; Page formats and record formats.
Transaction Management Introduction to Transaction Processing; Transaction and System Concepts; Desirable Properties of Transactions; Characterizing Schedules based on Recoverability; Characterizing Schedules based on Serializability; Two-Phase Locking Techniques, Concurrency Control based on Timestamp Ordering; Granularity of Data Items and Multiple Granularity Locking; Recovery Concepts, Recovery Techniques based on Deferred Update; Recovery Techniques based on Immediate Update; Shadow Paging; The ARIES Recovery Algorithms; Recovery in Multi-Database Systems; Database Backup and Recovery from Catastrophic Failures.

Unit – II 10 Hours
Tree Structured Indexing and Hash-Based Indexing:
Intuition for tree indexes; Indexed sequential access method; B+ trees, Search, Insert, Delete, Duplicates, B+ tree in practice Hash-Based Indexing: Static hashing, Extendible hashing, Linear hashing, comparisons

Unit – III 10 Hours
Overview of Query Evaluation and External Sorting:
The system catalog, Introduction to operator evaluation; Algorithm for relational operations; Introduction to query optimization; Alternative plans; A motivating example; what a typical optimizer does. DBMS sort data, A simple two-way merge sort; External merge sort

Unit – IV 10 Hours
Evaluating Relational Operators:
The Selection operation; General selection conditions; The Projection operation; The Join operation; The Set operations; Aggregate operations; The impact of buffering.
A Typical Relational Query Optimizer: Translating SQL queries in to Relational Algebra; Estimating the cost of a plan; Relational algebra equivalences; Enumeration of alternative plans; Nested sub-
queries; other approaches to query optimization

Unit – V 10 Hours

Physical Database Design and Tuning:
Introduction; Guidelines for index selection, examples; Clustering and indexing; Indexes that enable index-only plans, Tools to assist in index selection; Overview of database tuning; Choices in tuning the conceptual schema; Choices in tuning queries and views; Impact of concurrency; DBMS benchmarking. More Recent Applications

Self-learning topics: Comparative study with different DBMS architecture

Books

Course Outcome (COs)
At the end of the course, the student will be able to
1. Explain the fundamental storage concepts, architecture and features of space management
2. Interpret and summarize the large volume data with its design and performance tuning
3. Analyze the concepts of query evaluation, external sorting and relational operators
4. Analyze the different indexing structures and evaluate it
5. Assess the transaction management concepts and recovery techniques

Bloom’s Level
L 2
L 2
L 4
L 4, L 5
L 5

Program Outcome of this course (POs)
1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems
3. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
4. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains
5. Postgraduates can participate and succeed in competitive examinations.

PO No.
1
2
3
5
11

Course delivery methods
1. Lecture
2. Power-Point Presentation
3. Video

Assessment methods
1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>
Writing two IA test is compulsory.
Minimum marks required to qualify for SEE : 20

Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.
UNIX System Programming

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA442</th>
<th>Credits</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>GE</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>4-0-0</td>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Providing a clear understanding of developing complex system-level software in C programming language while gaining an intimate understanding of the UNIX operating system and its programming environment
2. Exploring the aspects of user/kernel interface, fundamental concepts of UNIX, user authentication, basic and advanced I/O, file systems, signals, process relationships
3. Providing the concepts of inter-process communication, software development and maintenance on UNIX systems

Pre-requisites:
1. UNIX and shell Programming (15MCA11)
2. Programming in C / C++ (15MCA14 / 15MCA24)
3. Operating systems (15MCA23).

Unit – I 10 Hours
Introduction to Unix system Programming:

Unit – II 11 Hours
UNIX Files and APIs:

Unit – III 10 Hours
UNIX Processes:

Unit – IV 11 Hours
Process Control and Relationships:
Self-learning topics: Job Control, Orphaned Process Groups.

Unit – V ___Hours
Signals and Daemon Processes:
Self-learning topics: Client-Server Model.
Books

Course Outcome (COs)

At the end of the course, the student will be able to

1. **Explain** the role of systems programming and standardization
2. **Demonstrate** the use of Unix system calls
3. **Discuss** how UNIX supports Unix file system, Process and process control
4. **Illustrate** Unix Signals and Daemon Processes

Program Outcome of this course (POs)

PO No.	Program Outcome of this course (POs)	Bloom’s Level
1 | Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data | L 3
2 | Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains | L 5
3 | Postgraduates will be able to communicate effectively in both verbal and written form | L 8
4 | Postgraduates will develop confidence for self-education and ability for life-long learning | L 10

Course delivery methods

Assessment methods

1. **Lecture**
2. **Power-Point Presentation**
3. **Video**

1. **Internal Assessment Test**
2. **Quiz**
3. **Assignment/Seminar/Project**

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE : 20

Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):

1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Cloud Computing

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA443</th>
<th>Credits</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>GE</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>4-0-0</td>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives
1. Providing hands on experience solving relevant problems
2. Developing the skills needed to become a practitioner or carry out research projects in this domain
3. Developing working experience cloud storage technologies
4. Learning I/O virtualization techniques that serve in offering software, computation and storage services on the cloud
5. Understanding the details of the MapReduce programming model

Pre-requisites:
1. Operating Systems (15MCA23)
2. Networks (15MCA31)
3. Knowledge of Virtualization

Unit – I 10 Hours
Distributed System Models and Enabling Technologies

Unit – II 10 Hours
Computer Clusters for scalable parallel computing
Clustering for massive parallelism: Cluster Development Trends, Design Objective of Computer Clusters, Fundamental Cluster Design issues. Virtual machines and Virtualization of clusters and Data centers: Implementation levels of virtualization: levels of virtualization Implementation, VMM Design requirements and providers, Virtualization support at the OS level, Middleware Support for Virtualization.

Cloud Platform Architecture over Virtualized Data Centers

Self-learning topics: Study of Hypervisors

Unit – III 10 Hours
Public Cloud Platforms
GAE, AWS, and Azure: Smart Cloud, Public Clouds and Service Offerings, Google App Engine (GAE), Amazon Web Service (AWS), Microsoft Windows Azure, Inter-cloud Resource

Cloud Programming and Software Environments
Features of Cloud and Grid Platforms: Cloud Capabilities and Platform Features, Traditional Features Common to Grids and Clouds, Data Features and Databases, Programming and Runtime Support. Parallel and Distributed Programming Paradigms: Parallel Computing and Programming Paradigms, MapReduce, Twister and Iterative MapReduce, Hadoop Library from Apache.

Unit – IV 10 Hours
Programming Support of App Engine
Programming the Google App Engine, Google File System (GFS), Bigtable, Google’s NOSQL system, Chubby, Google’s Distributed Lock service. Programming on Amazon AWS and Microsoft Azure: Programming on Amazon EC2, Amazon Simple Storage Service S3, Amazon Elastic Block Store EBS and SimpleDB, Microsoft Azure programming support. Emerging Cloud Software Environments: Open Source Eucalyptus and Nimbus, Open Nebula, Sector/Sphere, and OpenStack, Manjrasoft Aneka Cloud and Appliances

Unit – V 10 Hours
Ubiquitous Clouds and the Internet of Things
Performance of Distributed Systems and the Cloud Data-intensive Scalable Computing (DISC), Quality of Service in Cloud computing, Benchmarking MPI, Azure, EC2, MapReduce, and Hadoop. Online social and Professional Networking: Online Social Network Characteristics, Graph-Theoretic Analysis of Social networks, Communities and Applications of Social Networks, Facebook: The World’s Largest Content-Sharing Network, Twitter for Micro blogging.

Self-learning topics: News and Alert Services.

Books

Course Outcome (COs)
At the end of the course, the student will be able to

1. Compare the operation, implementation and performance of cloud computing systems, and the relative merits and suitability of each for complex data-intensive applications
2. Explain and categorize different cloud computing models, namely, infrastructure as a service (IaaS), platform as a service (PaaS), and software as a service (SaaS)
3. Identify security implications in cloud computing
4. Analyze the trade-offs inherent in Cloud Computing
5. Compare, contrast, and evaluate the key trade-offs between multiple approaches to cloud system design
6. Identify appropriate design choices when solving real-world cloud computing problems
7. Compose comprehensive case studies analyzing and contrasting different cloud computing solutions
8. Develop recommendations on cloud computing solutions for an enterprise

Bloom’s Level
L 4
L 2, L 4
L 3
L 4
L 4, L 5
L 3
L 6
L 3
Program Outcome of this course (POs)

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems
3. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
4. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains
5. Postgraduates will demonstrate research-based knowledge and research methods for addressing current issues in research trends

Course delivery methods
1. Lecture
2. Power-Point Presentation
3. Video

Assessment methods
1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE: 20

Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Advanced Computer Networks

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA444</th>
<th>Credits</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>GE</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>4-0-0</td>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Providing a clear understanding of key features of TCP/IP protocols used to explain many performance issues
2. Understanding the Coverage of the tools and techniques for performance evaluation of TCP/IP networks
3. Studying simulation techniques and discussing one popular simulation tool ns
4. Examining the performance concepts and issues for running TCP/IP in the emerging networking environment like wireless networks, mobile networks and satellite networks
5. Understanding congestion control algorithms
6. Discussing various TCP flavors and examining the new queue management schemes proposed for the network routers to combat congestion in highly dynamic environment
7. Summarizing critical performance issues for TCP implementation in end systems

Pre-requisites:

2. Background in system programming (MCA25), statistics and probability are helpful.

UNIT-I 11 Hours
Introduction, Fundamentals and Performance Measurement of TCP/IP Networks:

UNIT-II 10 Hours
TCP/IP Network Simulation and TCP Modeling:
Self-Learning Topics: Study of different TCP models.

UNIT-III 10 Hours
TCP/IP Performance over Wireless Networks and TCP/IP Performance over Mobile Networks:
Self-Learning Topics: TCP Performance in Ad Hoc Networks.

UNIT-IV 11 Hours
Passive Queue Management, Active Queue Management. TCP Implementation Overview, High
Performance TCP.

Self-Learning Topics: Performance Comparison of TCP Flavors.

UNIT-V

10 Hours

Introduction to Internet of Things

Internet of Things Common Definition, IoT Strategic Research and Innovation Directions, IoT Smart-X Applications, Network and Communication.

Books

2. TCP/IP Illustrated (Volume I, Volume II and Volume III), W. Richard Stevens, Addison-Wesley
3. OvidiuVermesan, Peter Friess, IoT from Research and Innovation to Market Development, River Publisher 2014

Course Outcome (COs)

At the end of the course, the student will be able to

1. **Explain** the types of tools available for performance measurement of TCP/IP Networks
2. **Interpret** and **Examine** advanced and emerging networking technologies
3. **Apply** skills to do advanced networking research and programming
4. **Appraise** the metrics used for performance evaluation of TCP/IP networks
5. **Elaborate** protocol details of TCP necessary to ensure reliable data transfer over unreliable networks

Bloom’s Level

- L 2
- L 2, L 4
- L 3
- L 5
- L 6

PO No.

- 1
- 4
- 6
- 10

Program Outcome of this course (POs)

1. Post graduates will demonstrate knowledge of mathematics, computer applications, and management
2. Post graduates will demonstrate an ability to design a system, component or process as per needs and specifications
3. Post graduates will demonstrate skills to use modern software tools and technology to build and test applications
4. Post graduates will develop confidence for self-education and ability for life-long Learning

Course delivery methods

1. Lecture
2. Power-Point Presentation
3. Video

Assessment methods

1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project
Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE: 20

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Software Testing

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA445</th>
<th>Credits</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>GE</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>4-0-0</td>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Providing a clear understanding of problem domain, Analyze and design different test cases for testing various types of system software and application software
2. Introducing the basics of software testing, finding problems in any computer program, planning and effective test approach, reporting findings etc
3. Explaining various approaches, techniques, technologies, and methodologies used in software testing and quality assurance
4. Exhibiting the Software Testing skills for analysis, testing using modern tools and technologies within or outside discipline
5. Analyzing different approaches to software testing and quality assurance
6. Selecting optimal solutions for different situations and projects

Pre-requisites:

1. A course on Computer programming language (15MCA14).
2. A course on software engineering (15MCA33).

Unit – I

Basics of Software Testing and Principles, Test case selection, Adequacy

Humans, Errors and Testing, Software Quality; Requirements, Behavior and Correctness, Correctness Vs Reliability; Testing and Debugging; Test Metrics; Software and Hardware Testing; Testing and Verification; Defect Management; Execution History; Test Generation Strategies; Static Testing; Test Generation from Predicates. Sensitivity, Redundancy, Restriction, Partition, Visibility and Feedback, Test Specification and cases, Adequacy Criteria, Comparing Criteria.

Self-learning topics: Case study for a given problem to explore the software quality, input domain and construction of test cases. Carry out the static testing and perform the defect management analysis.

Unit – II

A perspective on Testing, Examples and Boundary value testing, Equivalence class testing, Decision table based testing

Basic definitions, Test cases, Insights from a Venn diagram, Identifying test cases, Error and fault taxonomies, Level of testing, Examples: Generalized pseudocode, The triangle problem, the NextDate function, The commission problem, The SATM (Simple Automation Teller Machine) problem, The currency converter, Saturn windshield wiper. Boundary value analysis, Robustness testing, Worst-case testing, special value testing, Examples, Random testing, Equivalence classes, Equivalence test cases for triangle problem, NextDate function and commission problem, Guidelines and observations, Decision tables, Test cases for triangle problem

Self-learning topics: Practical implementation of the testing methods studied by taking any open source software for the examples studied

Unit – III

Path Testing, Data flow testing and Levels of Testing, Integration Testing

DD Paths, Test flow metrics, Basis path testing, guidelines and observations, Definition/Use testing, Slice based testing, Guidelines and observations. Traditional view of testing levels, Alternative life cycle models, the SATM systems, Separating integration and system testing, Guidelines and observations. Decomposition based integration, Call graph-based integration, Path based integration

Self-learning topics:
1. Case study to find out the cyclomatic complexity, DD path, set of basis path, McCabe’s concept of flipping for nodes with outdegree greater than or equal to 3 for the real world examples.
2. Case study of a program to perform the different types of integration methods.

Unit – IV

10 Hours

Fault Based Testing

Assumptions in fault-based testing, Mutation Analysis, Fault-based Adequacy Criteria; Variations on mutation Analysis; From Test case specification to Test Cases, Scaffolding, Generic vs specific Scaffolding, Test Oracles, Self-checks as oracles, Capture and Replay

Self-learning topics: Study and analysis of different assumptions in fault based testing, the method of scaffolding.

Unit – V

8 Hours

Planning and Monitoring the Process, Documenting Analysis and Test

Quality and Process, Test and Analysis strategies and plans, Risk Planning, Monitoring the Process, Improving the process, The quality team, Organizing documents, Test strategy document, Analysis and test plan, Test design specifications documents, Test and analysis reports

Self-learning topics: Preparation and organization of different types of documentation, technical writing and project reports

Books

2. MauroPezze, Michael Young, Software testing and Analysis- Process, Principles and Techniques, Wiley India, 2012

Course Outcome (COs)

At the end of the course, the student will be able to

1. **Identify** Test cases, Error and fault taxonomies, Levels of testing
2. **Classify** Boundary Value Testing, Equivalence Class Testing and Decision Table-Based Testing
3. **Determine** Alternative life-cycle models, recognize Basic concepts for requirements specification, assess context of interaction
4. **List and analyze** approaches for Test Execution: from test case specifications to test cases, Scaffolding, Generic versus specific scaffolding
5. **Identify** analysis strategies and plans, to Test design specifications documents, to Test and analysis reports

Bloom’s Level

L 3
L 4
L 5
L 1, L 4
L 3

Program Outcome of this course (POs)

PO No.

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
2. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications
3. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains
4. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications
Course delivery methods
1. Lecture
2. Power-Point Presentation
3. Video

Assessment methods
1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

➢ Writing two IA test is compulsory.
➢ Minimum marks required to qualify for SEE: 20

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Course learning objectives

1. Providing a clear understanding of foundational methodologies, techniques and tools that understanding the successful implementation of enterprise resource planning (ERP) systems

2. Focusing on integrating business processes in an enterprise resource planning (ERP) system. Students will experience both, the end-user and configuration perspectives of an ERP system implementation

Pre-requisites:

1. Knowledge of Business Process Reengineering, Data Warehousing, Data Mining, On–line Analytical Processing, Supply Chain Management.
2. Business Modules in an ERP Package, Finance, Manufacturing, SAP software

Introduction To ERP

Overview, Benefits of ERP, ERP and Related Technologies, Business Process Reengineering, Data Warehousing, Data Mining, On–line Analytical Processing, Supply Chain Management.

ERP Implementation

Implementation Life Cycle, Implementation Methodology, Hidden Costs, Organizing Implementation, Vendors, Consultants and Users, Contracts, Project Management and Monitoring

Business Modules

ERP Market

ERP Market Place, SAP AG, PeopleSoft, Baan Company, JD Edwards World Solutions Company, Oracle Corporation, QAD

Self-learning topics: System Software Associates

ERP – Present and Future

Turbo Charge the ERP System, EIA, ERP and E–Commerce, ERP and Internet

Self-learning topics: Future Directions in ERP.

Books

Course Outcome (COs)

At the end of the course, the student will be able to

1. **Demonstrate** the basic structure of an Enterprise Resource Planning system
2. **Demonstrate** typical integrated business processes in an ERP, such as procurement, production, and fulfillment
3. **Design** common business transactions as an end-user in an ERP system
4. **Perceive** as a member of an ERP implementation or configuration team
5. **Analyze** and **evaluate** the critical stage of implementation in the development of enterprise wide systems
6. **Build** an ERP system for specific business processes
7. **Evaluate** and **discuss** the need for linking enterprise mission & goals with the implementation of ERP systems
8. **Develop** and **demonstrate** the use of SAP tools to aid and understand the implementation process

Program Outcome of this course (POs)

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
2. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
3. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications
4. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications

Course delivery methods

1. Lecture
2. Power-Point Presentation
3. Video

Assessment methods

1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE : 20
Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Operations Research

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA447</th>
<th>Credits</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>GE</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>4-0-0</td>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Providing a clear understanding of the given problem and applies the fundamental techniques of operations research in solving the problem
2. Learning the necessary available techniques for Managerial decision making situations within business contexts
3. Introducing programming skills to design and implementing software solutions to solve problems in the domain of operations research

Pre-requisites:

1. A course on MIS (15MCA35)
2. Knowledge of Basic mathematics, MIS.

Unit – I 12 Hours

Introduction and Overview of the OR Modelling Approach, Introduction to Linear Programming:
The origin of OR, the nature of OR, the impact of OR, defining the problem and gathering data, formulating a mathematical model, deriving solutions from the model, testing the model, preparing to apply the model, implementation.

Formulation of linear programming problem (LPP), examples, Graphical solution, the LP Model, Special cases of Graphical method, assumptions of Linear Programming (LP), additional example

Unit – II 10 Hours

Solving LPP - the Simplex Method:
The essence of the simplex method, setting up the simplex method, algebra of the simplex method, the simplex method in tabular form, special cases in the simplex method, tie breaking in the simplex method, adopting to other model forms (Two Phase method, Big-M method)

Self-learning topics: Revised Simplex Method, Post optimality analysis

Unit – III 10 Hours

Duality Theory and Sensitivity Analysis:
The essence of duality theory, economic interpretation of duality, primal dual relationship, adapting to other primal forms, the role of duality in sensitive analysis, the dual simplex method

Self-learning topics:

Unit – IV 10 Hours

Transportation and Assignment Problems
The transportation problem, a stream line simplex method for the transportation problem, the assignment problem, a special algorithm for the assignment problem

Self-learning topics:

Unit – V 10 Hours

PERT and CPM, Game Theory:
Network representation, Critical path (CPM) computations and PERT networks.
The formulation of two persons, zero sum games, solving simple games - a prototype example, games
with mixed strategies, graphical solution procedure, solving by linear programming, extensions.

Self-learning topics: Scheduling a Project with PERT/CP

Books

Course Outcome (COs)

At the end of the course, the student will be able to

1. **Design and build** mathematical models to achieve higher profits and lower costs in business making decisions
2. **Apply** the tools and techniques in making critical thinking and objective analysis of decision problems in project management
3. **Analyze** the decision-making problem and identify the appropriate technique that can be applied to solve the problem
4. **Evaluate** performance of system or decision taken

Bloom’s Level
- L 6
- L 3
- L 4
- L 5

Program Outcome of this course (POs)

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems
3. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
4. Postgraduates will be able to communicate effectively in both verbal and written form
5. Postgraduates will demonstrate research-based knowledge and research methods for addressing current issues in research trends

PO No.
- 1
- 2
- 3
- 8
- 12

Course delivery methods

1. Lecture
2. Power-Point Presentation
3. Video

Assessment methods

1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE : 20
Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. **Minimum marks required in SEE to pass: 20**
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Elective Group-2

Big Data Analytics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>15MCA451</td>
<td>04</td>
</tr>
</tbody>
</table>

Pre-requisites:
1. A course on Database management system (MCA22).
2. Knowledge RDBMS, NOSQL

Unit – I 10 Hours
INTRODUCTION TO BIG DATA

DATA ANALYSIS

Unit – II 12 Hours

MINING DATA STREAMS

Unit – III 10 Hours
FREQUENT ITEMSETS AND CLUSTERING
Mining Frequent Itemsets - Market Based Model – Apriori Algorithm – Handling Large Data Sets in Main Memory – Limited Pass Algorithm – Counting Frequent Itemsets in a Stream – Clustering Techniques – Hierarchical – K-Means – Clustering High Dimensional Data – CLIQUE And PROCLUS – Frequent Pattern based Clustering Methods – Clustering in Non-
Unit – V
10 Hours

FRAMEWORKS AND VISUALIZATION
MapReduce – Hadoop, Hive, MapR – Sharding – NoSQL Databases - S3 - Hadoop
Distributed File Systems – Visualizations - Visual Data Analysis Techniques - Interaction
Techniques; Systems and Analytics Applications - Analytics using Statistical packages-
Approaches to modeling in Analytics – correlation, regression, decision trees, classification,
association-Intelligence from unstructured information-Text analytics-Understanding of
emerging trends and technologies

Self-Learning Topics: Industry challenges and application of Analytics

Books
2. Anand Rajaraman and Jeffrey David Ullman, “Mining of Massive Datasets”,
3. Bill Franks, “Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data
 Streams with Advanced Analytics”, John Wiley & sons, 2012
6. Jiawei Han, Micheline Kamber “Data Mining Concepts and Techniques”, Second

Course Outcome (COs)
At the end of the course, the student will be able to

1. Define and Rephrase the limitations of RDBMs, need of NoSQL, Big Data and different NoSQL products available in market
2. Apply CRUD operations with MongoDB, storing data and accessing data with MongoDB/CouchDB/Cassandra
3. Construct MapReduce – parallel programming model for distributed processing on large data sets on a cluster of computers
4. Analyze infrastructure on Hadoop and Analyze Big Data with Hive using Apache Pig
5. Develop Web applications using NoSQL, Python and PHP
6. Construct MapReduce – parallel programming model for distributed processing on large data sets on a cluster of computers
7. Create Apache Hive – data warehouse infrastructure on Hadoop and
 Analyze Big Data with Hive using Apache Pig
8. Develop Web applications using NoSQL, Python and PHP

Program Outcome of course (POs)

PO No.
1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems
3. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications
4. Postgraduates will demonstrate skills to use modern software tools and
technology to build and test applications
5. Postgraduates will be able to communicate effectively in both verbal and written form
6. Postgraduates will show the understanding of impact of engineering solutions on the society as a successful entrepreneur or IT professional

<table>
<thead>
<tr>
<th>Course delivery methods</th>
<th>Assessment methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lecture</td>
<td>1. Internal Assessment Test</td>
</tr>
<tr>
<td>2. Power-Point Presentation</td>
<td>2. Quiz</td>
</tr>
<tr>
<td>3. Video</td>
<td>3. Assignment/Seminar/Project</td>
</tr>
</tbody>
</table>

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE: 20

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Finite Automata and Formal Languages

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA452</th>
<th>Credits</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>GE</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>4-0-0</td>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives
1. Providing a clear understanding of the theoretical foundations and basic principles of Computer Science like Automata, Formal languages and Computability and Complexity
2. Encouraging the students to gain the logic building capabilities for various mathematical arguments and scientific problems
3. Making the students to understand the concepts like Finite Automata and certain kinds of Formal languages which are used in the design and construction of Computer hardware/software
4. Making the students to understand and appreciate the properties of Regular languages and Context Free languages and proving certain languages are Non-regular and Non Context Free languages by the application Pumping lemma to perform various operations on Formal languages and take decision to solve varieties of problems that are of practical importance
5. Making the students aware of use of Context Free grammar in specifying programming languages and be able to understand the relation between Context Free grammar and a class of Automata called Push Down Automata which is found immediate application in programming language specification and building an efficient Compiler for some languages
6. Understanding important concepts like Turing Machine, Multiple Turing Machine and Non-Deterministic Turing machine, helps to conclude that the Turing machine is the ultimate among different models of computation

Pre-requisites:
1. Knowledge of programming constructs
2. Discrete Mathematics (MCA14)
3. Data Structures (MCA21)

Unit – I
10 Hours

Introduction to Finite Automata:
Introduction to Finite Automata; The central concepts of Automata theory; Deterministic finite automata; Nondeterministic finite automata; An application of finite automata; Finite automata with Epsilon-transitions

Self-Learning Topics: Moore Mealy Machines

Unit – II
12 Hours

Regular Expressions and Regular Languages:
Regular expressions; Finite Automata and Regular Expressions; Applications of Regular Expressions Regular languages; Proving languages not to be regular languages; Closure properties of regular languages; Decision properties of regular languages; Equivalence and minimization of automata.

Self-Learning Topics: Regular Grammar and implementation
Unit – III

Context-Free Grammars and Languages:
Context –free grammars; Parse trees; Applications; Ambiguity in grammars and Languages. Normal forms for CFGs; The pumping lemma for CFGs; Closure properties of CFLs
Self-Learning Topics: Context Sensitive Grammar

Unit – IV

Pushdown Automata:
Definition of the Pushdown automata; the languages of a PDA; Equivalence of PDA’s and CFG’s; Deterministic Pushdown Automata

Unit – V

Introduction to Turing Machine:
Problems that Computers cannot solve; The turning machine; Programming techniques for Turning Machines.
Self-Learning Topics: Turing Machine to check for wrong spelling

Books

Course Outcome (COs)
At the end of the course, the student will be able to:

Identify and explain concept and importance of Automata Theory. Analyze the problem and identify the use of Deterministic Finite Automata and Nondeterministic Automata	L2, L3
Identify the applications of Finite Automata and Regular expression, achieve proficiency in the design of Finite Automata with Epsilon transitions and apply software tools based on Formal languages and models of computation	L2, L3
Identify and explain the problems that computers cannot solve. Explain the working principle of Turing Machine. Achieve the proficiency in the programming techniques of Turing machines, Identify the extensions to the basic Turing Machines, Turing Machines and Computer Design, and prove certain languages are not Regular languages by applying Pumping lemma, Closure properties of Regular languages and decision properties of regular languages. Simplify the equivalence and minimization of Automata	L2, L3
Identify and simplify certain Context Free Grammars and languages to be	L3, L4

Bloom’s Level
Discuss the limitation of Regular languages and the working principle of Push Down Automata (PDA) and achieve proficiency in the design of PDA for Context Free Languages (CFL). Explain the language of a PDA and simplify the equivalence of PDA’s, CFG’s and Deterministic Push Down Automata.

Discuss and prove certain languages not to be Context Free Languages by applying Pumping lemma and Closure properties of context free languages. Distinguish the different Normal forms of Context free languages with illustrative examples.

Program Outcome of this course (POs)

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems
3. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
4. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications
5. Postgraduates will be able to communicate effectively in both verbal and written form
6. Postgraduates can participate and succeed in competitive examinations

Course delivery methods
1. Lecture
2. Power-Point Presentation
3. Video

Assessment methods
1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE : 20

Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.
Software Architecture

Course Code | 15MCA453 | Credits | 04
Course type | GE | CIE Marks | 50 marks
Hours/week: L-T-P | 4-0-0 | SEE Marks | 50 marks
Total Hours: | 52 | SEE Duration | 3 Hours for 100 marks

Course learning objectives
1. Providing a clear understanding of the challenges of advanced software design and the issues associated with large-scale software architectures, frameworks, patterns and components
2. Exploring the tools and techniques used for the automatic analysis and evaluation of software

Pre-requisites:
1. Analysis of Algorithms (MCA41)
2. Software Engineering (MCA33)

Unit – I
Introduction to Software Architecture and its context:
Meaning of software architecture and its scope; Architectural Structures and views; Architectural patterns; Features of a good Architecture. Importance of Software Technical Context; Project life-cycle context; Business context; Professional context; Stake holders; Influence of Software Architecture

Unit – II
Understanding Quality Attributes Architecture & Requirements:
Functionality; quality attribute considerations; Specifying and achieving Quality attribute requirements; Guiding quality design decisions; Availability; Interoperability; Modifiability; Performance; Security; Testability; Usability

Unit – III
Quality Attribute modeling and Analysis:
Modeling Architecture to enable quality attribute analysis; Quality attribute check lists; Through experiments and Back-of-the envelope analysis; Experiments; Simulations and prototypes; Analysis at different stages of the life cycle

Unit – IV
Architecture and requirements:
Gathering ASRs from requirements documents; ASRs by interviewing stake holders; ASRs by understanding the business; capturing ASRs in a utility tree; Typing the methods together

Unit – V
Designing an Architecture:
Design strategy; the attribute driven design methods; the steps of ADD Documenting Software Architecture: Uses and Audiences for architecture documentation; Notations, View and Behavior

Self-Learning Topics: Documentation and quality attributes
Books

Course Outcome (COs)
At the end of the course, the student will be able to
1. **List** the major approaches to automated software analysis achievable through static and dynamic analysis
 Bloom’s Level: L 1
2. **Classify** some of the challenging design issues that software engineers face and the trade-offs associated with the solutions to these
 Bloom’s Level: L 2
3. **Explain** the principles behind software patterns and be able to apply a number of the fundamental patterns
 Bloom’s Level: L 2
4. **Demonstrate** practical competence in the application and construction of tools to support automated software analysis
 Bloom’s Level: L 2
5. **Compose** the need for software architecture and the principles of the classic architectural styles
 Bloom’s Level: L 6

Program Outcome of this course (POs)
1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
 PO No.: 1
3. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
 PO No.: 3
4. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications
 PO No.: 4

Course delivery methods
1. Lecture
2. Power-Point Presentation
3. Video

Assessment methods
1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE : 20
Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. **Minimum marks required in SEE to pass: 20**
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Mobile Applications

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>15MCA454</td>
<td>04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Type</th>
<th>CIE Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE</td>
<td>50 marks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hours/week: L-T-P</th>
<th>SEE Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-0-0</td>
<td>50 marks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Hours:</th>
<th>SEE Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Providing the basic knowledge of Mobile applications
2. Understanding mobile application users, information design, mobile platforms and using the tools for interface design.
3. Emphasizing on the basics of Android, guide them in Android application development, designing user interfaces using views, pictures and menus
4. Introducing data persistence, creating and using databases
5. Introducing the IOS tools, debugging IOS apps, working with Objective C. Introducing the Windows Phone 7 tools and building a simple application in windows app

Pre-requisites:

1. Basic knowledge of computer and logic building capabilities.
2. Knowledge of IDE.

Introduction to Mobile Applications

12 Hours

Self-learning topics: Developing WCF Application in Visual Studio

Mobile User interface Design and Mobile Websites

10 Hours

Choosing a Mobile Web Option, Adaptive Mobile Website, Mobile Web Applications with HTML 5

Introduction to Android

10 Hours

Android – Deciding to target android as your mobile platform, Getting the tools you need, Understanding Activities, Linking activities, Calling Build-in-Applications using Intents, Displaying Notifications, Understanding the components of a screen

Designing Android user-interfaces and Data Persistence

10 Hours

Designing the user interface using views – Basic views, Picker views, List views, using image views to display pictures, using menus with views. Data Persistence – saving and loading user preferences, Persisting Data to Files, Creating and using Databases

Android Messaging, Networking, Location Based Services

10 Hours

SMS Messaging, Sending E-mail – Networking – Downloading Binary Data, Text Files- Accessing Web Services – Performing Asynchronous Calls – Location Based Services – Displaying Maps – Getting Location Data – Creating your own services – Communicating between a service and an activity – Binding activities to Services

Self-learning topics: IOS and Windows Phone 7

Books

2. Wei – Meng Lee, Beginning Android Application Development, Wiley 2011
Course Outcome (COs)

At the end of the course, the student will be able to

1. **List** the importance of Mobile Strategies in Business World (L 1)
2. **Identify** the tools required for Mobile interface Design (L 3)
3. **Apply** HTML 5 in Mobile Web Applications development (L 3)
4. **Design** interfaces using views, displaying pictures and menus. (L 6)
5. **Develop** apps with Data Persistence (L 6)
6. **Develop** simple apps in Android, IOS and Windows Phone7 (L 6)

Program Outcome of this course (POs)

<table>
<thead>
<tr>
<th>PO No.</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems</td>
</tr>
<tr>
<td>2.</td>
<td>Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data</td>
</tr>
<tr>
<td>3.</td>
<td>Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications</td>
</tr>
<tr>
<td>4.</td>
<td>Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains</td>
</tr>
<tr>
<td>5.</td>
<td>Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications</td>
</tr>
<tr>
<td>6.</td>
<td>Postgraduates will demonstrate knowledge of professional and ethical responsibilities</td>
</tr>
<tr>
<td>7.</td>
<td>Postgraduates will be able to communicate effectively in both verbal and written form</td>
</tr>
<tr>
<td>8.</td>
<td>Postgraduates will show the understanding of impact of engineering solutions on the society as a successful entrepreneur or IT professional</td>
</tr>
<tr>
<td>9.</td>
<td></td>
</tr>
</tbody>
</table>

Course delivery methods

1. Lecture
2. Power-Point Presentation
3. Video

Assessment methods

1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE: 20
Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.
Client-Server Computing

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course type</th>
<th>CIE Marks</th>
<th>Hours/week: L-T-P</th>
<th>SEE Marks</th>
<th>Total Hours:</th>
<th>SEE Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>15MCA455</td>
<td>04</td>
<td>GE</td>
<td>50 marks</td>
<td>4-0-0</td>
<td>50 marks</td>
<td>52</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Providing a clear understanding of core aspects of Software Architecture and the need for software architecture
2. Exploring the concepts of middleware architecture design principles, requirements traceability and to insure the system meets crosscutting end-to-end software architectural properties
3. Implementing an architectural specification and to construct architectures in a teamwork setting with minimal requirements
4. Applying software-sizing analysis based on architectural components and requirements analysis

Pre-requisites:
A course on computer network (15MCA31)

Unit – I 12 Hours

Introduction to Client/Server Computing:

Self-learning topics: MVC Model

Unit – II 10 Hours

Client services:
Role of the client, Client services, Remote Procedure call, print services, remote services, Utility Services, Message services, Network Services, Application Services, Database Services, Dynamic Data Exchange(DDE), Object Linking and embedding, Common Object request broker architecture, client tools, Non GUI, GUI Object user interface clients(OOUI).

Unit – III 10 Hours

Server functionality:

Unit – IV 10 Hours

Connectivity:
Open systems interconnect, Communications, Interface technology, Inter-process communications, wide area network technology, Network Management. Application development environment definition, productivity measures, performance, support, organization and management, task allocation server and client side

Unit – V 10 Hours

Distributed objects and components:
CORBA compound documents, Opendoc component model, OLE/DCOM

Books

Course Outcome (COs)

At the end of the course, the student will be able to

1. **Illustrate** the significance of middleware architecture design principles
2. **Identify** and compose design patterns
3. **Analyze** the requirements traceability and to insure the system meets cross-cutting end-to-end software architectural properties
4. **Compare** architectural styles including distributed computing, service-oriented architectures, database-centric architectures, web architectures, email and AI architectures
5. **Build** existing systems and then extend them with new capabilities using concepts from architecture description languages

Program Outcome of this course (POs)

1. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems
2. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications
3. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains
4. Postgraduates will show the understanding of impact of engineering solutions on the society as a successful entrepreneur or IT professional

Course delivery methods

- Lecture
- Power-Point Presentation
- Video

Assessment methods

- Internal Assessment Test
- Quiz
- Assignment/Seminar/Project

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE : 20

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):

1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. **Minimum marks required in SEE to pass: 20**
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Principles of User Interface Design

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA456</th>
<th>Credits</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>GE</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>4-0-0</td>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Providing a clear understanding of usability, design principles, guidelines, heuristics and other fundamentals of Human-Computer Interaction
2. Analyzing a set of requirements in terms of its user-interface implications
3. Developing a usage scenario for a given set of user requirements and available technologies. Construct a user-interaction strategy for a given problem
4. Sketching a series of user-interfaces for a given use scenario
5. Implementing a designed user-interface to demonstrate its functionality and usability
6. Employing a set of usability engineering methods to refine a designed user-interface
7. Evaluating a user-interface using suitable evaluation methodology.

Pre-requisites:
A course on software engineering (15MCA33).

Unit – I

Introduction:

Self-learning topics: Comparative study of the different types of interface designs

Unit – II

Evaluating Interface Design:
Introduction, Expert Reviews, Usability Testing and Laboratories, Survey Instruments, Acceptance tests, Evaluation during Active Use, Controlled Psychologically Oriented Experiments Interaction Styles Direct Manipulation and Virtual Environments: Introduction, Examples of Direct Manipulation, Discussion of direct manipulation, 3D Interfaces, Tele-operation, Virtual and Augmented Reality Menu Selection, Form Filling and Dialog Boxes: Introduction, Task-Related Menu Organization, Single Menus, Combination of Multiple Menus, Content Organization, Fast Movement Through Menus, Data Entry With Menus, Form Filling, Dialog Boxes and Alternatives, Audio Menus and Menus for Small Displays

Unit – III

Command and Natural Languages:
Introduction, Command-organization functionality strategies and structure, Naming and Abbreviations, Natural Language in computing.
Interaction Devices: Introduction, Keyboards and Keypads, Pointing Devices, Speech and Auditory interfaces, Displays-Small and Large

56
Unit – IV 10 Hours

Design Issues:

Self-learning topics: Comparative study of mobile interfaces and desktop interfaces

Unit – V 10 Hours

Information Search and Visualization:
Introduction, Search in Textual Documents and Database Querying, Multimedia document search, Advanced filtering and Search Interfaces, Information Visualization: Introduction, Data type by task taxonomy, Challenges for information visualization

Self-learning topics: Exploring the essentials aspect of designing and development of user interface

Books

Course Outcome (COs)

At the end of the course, the student will be able to

Bloom’s Level

1. **Plan and Develop** a methodology for effective design of user interface to relevant stakeholders using design rationale and a sketching/presentation tool in an informed, reasonable and persuasive way L 6
2. **Apply** design principles, guidelines and heuristics to create a user-interaction strategy that solves a real-world problem L 3
3. **Interpret and determine** the Benefits of Structure, Naming and Abbreviations, Command Menus, Natural Language in Computing L 2, L 5
4. **Identify** and usage the Interaction Devices, Keyboards and Function Keys, Pointing Devices, Speech Recognition, Digitization, and Generation, Image and Video Displays, Printers L 3
5. **Design** a usable and compelling user-interface given a set of requirements and available technologies L 6
6. **Evaluation** of user-interface in consultation with stakeholders for employing a series of evaluation methods available in usability engineering L 5

Program Outcome of this course (POs)

<table>
<thead>
<tr>
<th>PO No.</th>
<th>Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications</td>
</tr>
<tr>
<td>2.</td>
<td>Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains</td>
</tr>
<tr>
<td>3.</td>
<td>Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications</td>
</tr>
<tr>
<td>4.</td>
<td>Postgraduates will demonstrate knowledge of professional and ethical</td>
</tr>
</tbody>
</table>

57
responsibilities.

6. Postgraduates will be able to communicate effectively in both verbal and written form

<table>
<thead>
<tr>
<th>Course delivery methods</th>
<th>Assessment methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lecture</td>
<td>1. Internal Assessment Test</td>
</tr>
<tr>
<td>2. Power-Point Presentation</td>
<td>2. Quiz</td>
</tr>
<tr>
<td>3. Video</td>
<td>3. Assignment/Seminar/Project</td>
</tr>
</tbody>
</table>

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE : 20

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):

1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.

2. **Minimum marks required in SEE to pass: 20**

3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.
Mobile Computing

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Type</th>
<th>CIE Marks</th>
<th>SEE Marks</th>
<th>SEE Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>15MCA457</td>
<td>04</td>
<td>GE</td>
<td>50 marks</td>
<td>50 marks</td>
<td>3 Hours for 100 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td></td>
<td>4-0-0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course learning objectives

1. Inculcating knowledge of Mobile Computing, Mobile Computing Architecture, and Mobile Computing Environment
2. Describing the various technologies like Global System for Mobile Communication (GSM), Short Message Service (SMS), General Packet Radio Service (GPRS), Code Division Multiple Access (CDMA), Third Generation for Mobile Telecommunication (3G), and World Wide Interoperability for Microwave Access (WiMAX).
3. Understanding Mobile Handsets with their design and Mobile Operating System with their features
4. Elaborating Mobile Internet Applications with respect to Thin Client, Wireless Application Protocol (WAP) and various Markup Languages.

Pre-requisites:
1. In-depth knowledge of Computer Networks (MCA31) and Internet.
3. Awareness of latest trends in Mobile Operating System and Wireless Communication

Unit – I

10 Hours
Introduction to Mobile Computing and its Architecture:
Mobile Computing Architecture: Type of Networks, Architecture for Mobile Computing, Three-Tier Architecture that includes Presentation (Tier-1), Application (Tier-2), and Data (Tier-3). Design Considerations for Mobile Computing: Client Context Manager, Context Aware Systems.

Unit – II

10 Hours
Global System for Mobile Communication (GSM) and Short Message Service (SMS):
Wireless Networks – 2: GPRS

Unit – IV
10 Hours
Code Division Multiple Access (CDMA), Third Generation for Mobile Telecommunication (3G), World Wide Interoperability for Microwave Access (WiMAX), and Mobile Client:
Moving Beyond The Desktop, A Peek Under The Hood, Mobile Phones, Features of Mobile Phones, Personal Digital Assistant (PDA), and Design Constraints in Application for Handheld Devices.
Self-Learning Topics: Introduction to Mobile IP and Mobile IP with IPV6

Unit – V
12 Hours
Mobile Operating System, Mobile Computing Environment, and Mobile Internet Applications:
Self-Learning Topics: Midlet Programming

Books
Course Outcome (COs)

At the end of the course, the student will be able to

1. **Explain** Mobile Computing, Mobile Computing Architecture, and describe design considerations for Mobile Computing
 Bloom’s Level L2
2. **Explain** Mobile Phones, Mobile OS and their features
 Bloom’s Level L2
3. **Illustrate** Global Systems for Mobile Communications (GSM) and Short Service Messages (SMS), GPRS, Packet Data Network, 3G and WiMAX
 Bloom’s Level L2
4. **Construct** the complete phases of software development life cycle of any mobile application
 Bloom’s Level L6
5. **Design and develop** Mobile Internet Applications using the state of the art technologies and various Markup Languages
 Bloom’s Level L6

Program Outcome of this course (POs)

PO No. 1.
Post graduates will demonstrate knowledge of mathematics, computer applications, and management
Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems
Bloom’s Level L1 L2

Assessment methods

1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Course delivery methods

1. Lecture
2. Power-Point Presentation
3. Video

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/Course Seminar/Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- **Minimum marks required to qualify for SEE : 20**

Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):

1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. **Minimum marks required in SEE to pass: 20**
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.
Bloom’s Taxonomy of Learning Objectives

Bloom’s Taxonomy in its various forms represents the process of learning. It was developed in 1956 by Benjamin Bloom and modified during the 1990’s by a new group of cognitive psychologists, led by Lorin Anderson (a former student of Bloom’s) to make it relevant to the 21st century. The revised taxonomy given below emphasizes what a learner “Can Do”.

<table>
<thead>
<tr>
<th>Lower order thinking skills (LOTS)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 Remembering</td>
<td>Retrieve relevant knowledge from memory.</td>
</tr>
<tr>
<td>L2 Understanding</td>
<td>Construct meaning from instructional material, including oral, written, and graphic communication.</td>
</tr>
<tr>
<td>L3 Applying</td>
<td>Carry out or use a procedure in a given situation – using learned knowledge.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Higher order thinking skills (HOTS)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L4 Analyzing</td>
<td>Break down knowledge into its components and determine the relationships of the components to one another and then how they relate to an overall structure or task.</td>
</tr>
<tr>
<td>L5 Evaluating</td>
<td>Make judgments based on criteria and standards, using previously learned knowledge.</td>
</tr>
<tr>
<td>L6 Creating</td>
<td>Combining or reorganizing elements to form a coherent or functional whole or into a new pattern, structure or idea.</td>
</tr>
</tbody>
</table>
Department of Master of Computer Applications (M.C.A.)

Scheme and Syllabus (2017 Scheme)
5th Semester Master of Computer Applications (M.C.A.)
INSTITUTION VISION

Gogte Institute of Technology shall stand out as an institution of excellence in technical education and in training individuals for outstanding caliber, character coupled with creativity and entrepreneurial skills.

MISSION

To train the students to become Quality Engineers with High Standards of Professionalism and Ethics who have Positive Attitude, a Perfect blend of Techno-Managerial Skills and Problem solving ability with an analytical and innovative mindset.

QUALITY POLICY

- Imparting value added technical education with state-of-the-art technology in a congenial, disciplined and a research oriented environment.
- Fostering cultural, ethical, moral and social values in the human resources of the institution.
- Reinforcing our bonds with the Parents, Industry, Alumni, and to seek their suggestions for innovating and excelling in every sphere of quality education.

DEPARTMENT VISION

Successful Career and Entrepreneurship: The ability to employ modern computer languages, technologies, environments, and platforms in creating innovative career paths to be an entrepreneur, and a zest for higher studies.

MISSION

To train the graduates to become IT professionals having strong fundamental knowledge in the field of computer application with ethical values to meet increasing global challenges of ever evolving technologies.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

1. The graduates will be inculcated with substantial knowledge of mathematics, computer so that they become proficient in providing solutions to computing problems.
2. The graduates will be trained to develop the ability to analyze, model, design, implement system to meet specified requirements while considering real-world constraints.
3. The graduates will be provided with a platform to explore latest trends and technology adequate training & opportunities to work as a team on multidisciplinary projects with efficient leadership qualities.
4. The graduates will be made aware on the benefits of life-long learning and will be introduced to professional ethics and codes of professional practice.
PROGRAM OUTCOMES (POs)

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management.
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems.
3. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data.
4. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications.
5. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains.
6. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications.
7. Postgraduates will demonstrate knowledge of professional and ethical responsibilities.
8. Postgraduates will be able to communicate effectively in both verbal and written form.
9. Postgraduates will show the understanding of impact of engineering solutions on the society as a successful entrepreneur or IT professional.
11. Postgraduates can participate and succeed in competitive examinations.
12. Postgraduates will use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PROGRAM SPECIFIC OUTCOMES (PSOs)

1. Professional Skills: The ability to understand, analyze and develop computer programs in the areas related to algorithms, system software, simulation, software design, web design, big data analytics, and networking for efficient design of computer-based systems of varying complexity.
2. Problem-Solving Skills: The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality applications for business success.
3. Successful Career and Entrepreneurship: The ability to employ modern computer languages, technologies, environments, and platforms in creating innovative career paths to be an entrepreneur, and a zest for higher studies.
Scheme of Teaching
V Semester

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>L-T-P</th>
<th>Credits</th>
<th>Contact Hours</th>
<th>CIE Marks</th>
<th>SEE Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15MCA51</td>
<td>Object Oriented Modeling and Design</td>
<td>CC</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>15MCA52</td>
<td>Topics in Enterprise Architecture-2 (C#.NET)</td>
<td>CC</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>15MCA53</td>
<td>Simulation and Modeling</td>
<td>CC</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>15MCA54X</td>
<td>Elective - 3</td>
<td>GE</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>15MCA55X</td>
<td>Elective - 4</td>
<td>GE</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>15MCA56</td>
<td>Object Oriented Modeling and Design laboratory</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>15MCA57</td>
<td>Topics in Enterprise Architecture-2(C#.NET) Laboratory</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>15MCA58</td>
<td>Project Work-1</td>
<td>CC</td>
<td>0-0-1</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Total 20-0-3 26 29 400 400 800

CIE: Continuous Internal Evaluation **SEE:** Semester End Examination **L:** Lecture **T:** Tutorial **P:** Practical **CC:** Core Course **GE:** Generic Elective

Elective Groups

Note: Students are advised to select any one subject from the following elective groups for Elective-3 and Elective-4 respectively.

Elective Group- 3

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>541</td>
<td>Data Mining and Data Warehousing</td>
</tr>
<tr>
<td>2</td>
<td>542</td>
<td>Compiler Design</td>
</tr>
<tr>
<td>3</td>
<td>543</td>
<td>Services Oriented Architecture</td>
</tr>
<tr>
<td>4</td>
<td>544</td>
<td>Digital Marketing</td>
</tr>
<tr>
<td>5</td>
<td>545</td>
<td>Software Project Management</td>
</tr>
<tr>
<td>6</td>
<td>546</td>
<td>Supply Chain Management</td>
</tr>
<tr>
<td>7</td>
<td>547</td>
<td>Digital Image Processing</td>
</tr>
</tbody>
</table>

Elective Group- 4

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>551</td>
<td>NOSQL</td>
</tr>
<tr>
<td>2</td>
<td>552</td>
<td>Web 2.0 and Rich Internet Applications</td>
</tr>
<tr>
<td>3</td>
<td>553</td>
<td>Storage Area Networks</td>
</tr>
<tr>
<td>4</td>
<td>554</td>
<td>Information and Network Security</td>
</tr>
<tr>
<td>5</td>
<td>555</td>
<td>Mobile Ad-hoc Sensor Network</td>
</tr>
<tr>
<td>6</td>
<td>556</td>
<td>Professional Communications and Ethics</td>
</tr>
<tr>
<td>7</td>
<td>557</td>
<td>Pattern Recognition</td>
</tr>
</tbody>
</table>
Object Oriented Modeling and Design Patterns (Theory)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA51</th>
<th>Credits</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>CC</td>
<td>CIE Marks</td>
<td>50 Marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>4-0-0</td>
<td>SEE Marks</td>
<td>50 Marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives
1. Create a requirements model using UML class notations and use-cases based on statements of user requirements, and to analyze requirements models given to them for correctness and quality
2. Comprehend enough Java to see how to create software the implements the OO designs modeled using UML
3. Focus on modeling and how Unified Modeling Language (UML) represents object-oriented system using different modeling views, and pointing out the importance and function of each UML model throughout the process of object-oriented analysis and design

Pre-requisites:
A course on Object Oriented Programming-II (java)- MCA32

Unit – I 11 Hours
Introduction, Modeling Concepts, Class Modeling and Advanced Class Modeling:
What is Object Orientation? What is OO development? OO themes; Evidence for usefulness of OO development; OO modeling history. Modeling as Design Technique: Modeling; abstraction; The three models, Object and class concepts; Link and associations concepts; Generalization and inheritance; A sample class model; Navigation of class models; Practical tips. Advanced object and class concepts; Association ends; N-array associations; Aggregation; Abstract classes; Multiple inheritance
Self-learning Topics: Metadata; Reification; Constraints; Derived data; Packages

Unit – II 10 Hours
State Modeling and Advanced State Modeling, Interaction Modeling and Advanced Interaction Modeling:
State Modeling: Events, States, Transitions and Conditions; State diagrams; State diagram behavior; Practical tips. Advanced State Modeling: Nested state diagrams; Nested states; Signal generalization; Concurrency; A sample state model. Interaction Modeling: Use case models; Sequence models; Activity models
Self-learning Topics: Relation of class and state models, Use case relationships; Procedural sequence models; Special constructs for activity models

Unit – III 10 Hours
Process Overview, System Conception, Domain Analysis and Application Analysis:
Process Overview: Development stages; Development life cycle. System Conception:
Devising a system concept; elaborating a concept; preparing a problem statement. Overview of analysis; Domain class model; Domain state model; Domain interaction model; Iterating the analysis. Application Analysis: Application interaction model; Application class model

Self-learning Topics: Application state model; adding operations

Unit – IV 11 Hours

System Design and Class Design:
Overview of system design; Estimating performance; Making a reuse plan; Breaking a system in to sub-systems; Identifying concurrency; Allocation of sub-systems; Management of data storage; Handling global resources; Choosing a software control strategy; Handling boundary conditions; Setting the trade-off priorities; Common architectural styles; Architecture of the ATM system as the example. Class Design: Overview of class design; Bridging the gap; Realizing use cases; Designing algorithms; Recursing downwards, Refactoring; Design optimization; Reification of behavior; Adjustment of inheritance; Organizing a class design;

Self-learning Topics: Reification of behavior; Adjustment of inheritance; Organizing a class design

Unit – V 10 Hours

Design Patterns:
What is a pattern and what makes a pattern? Pattern categories; Relationships between patterns; Pattern description. Introduction, structural decomposition, Organization of work, Model View Controller; Communication Patterns: Client-Dispatcher-Server; Publisher-Subscriber; Management Patterns: Command processor; Whole Part, View Handler

Self-learning Topics: Forwarder-Receiver, Master Slave

Books
2. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal: Pattern-Oriented Software Architecture, A System of Patterns, Volume 1, John Wiley and Sons, 2006
3. Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma, Richard Helm, Ralph Johnson, John M. Vlissides
4. Head First Design Patterns, Elisabeth Freeman, Eric Freeman, Bert Bates, Kathy Sierra

Course Outcome (COs)
At the end of the course, the student will be able to

1. **Apply** knowledge of software engineering methods, such as object-oriented analysis and design methods with a clear emphasis on UML.
 Bloom’s Level L2
2. **Analyze and design** software systems, components to meet desired needs
 Bloom’s Level L4
3. **Identify, formulate and solve** software development problems: software requirements, specification (problem space), software design, and implementation (solution space).
 Bloom’s Level L3
4. **Apply** the graphical UML representation using tools, such as IBM’s Rational Software Architect and Net Beans
 Bloom’s Level L3
Program Outcome of this course (POs)

PO No.
1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management 1
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems 2
3. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data 3
4. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains 5
5. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications 6
6. Postgraduates can participate and succeed in competitive examinations 11

Course delivery methods
1. Lecture
2. Power-Point Presentation
3. Videos

Assessment methods
1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/Course Seminar/Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE: 20

Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):

1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Topics in Enterprise Architecture-2 (C#.NET) (Theory)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA52</th>
<th>Credits</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>CC</td>
<td>CIE Marks</td>
<td>50 Marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>4-0-0</td>
<td>SEE Marks</td>
<td>50 Marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives
1. Imparting the knowledge of the core aspects of the .NET platform
2. Exploring in detail the characteristics of the C# programming language, including new syntactical constructs introduced with .NET 2.0
3. Exploring the object-oriented features of C# programming language such as encapsulation, inheritance, and polymorphism
4. Focusing on ADO.NET technology as a way to interact with database
5. Providing an insight into the fundamentals of ASP.NET and their usage to give sufficient knowledge to build rich client applications for desktop, laptop, and tablet PCs

Pre-requisites: Object Oriented Programming using C++ and Java (MCA24/MCA32).

Unit – I
10 Hours
Getting started with .NET Framework 4.0 and C# introduction:
Need of C#, C# Pre-processor Directives, Creating a Simple C# Console Application, Identifiers and Keywords. Data Types, Variables and Constants: Value Types, Reference Types, Type Conversions, Boxing and Undoing, Variables and Constants. Expression and Operators: Operator Precedence, Using the ?? (Null Coalescing) Operator, Using the :: (Scope Resolution) Operator and Using the is and as Operators. Control Flow statements: Selection Statements, Iteration Statements and Jump Statements.

Unit – II
12 Hours
Namespaces, Classes, Objects, Structures and Object- Oriented Programming:
Self-Study Topics: Implementation of Interfaces and Inheritance

Unit – III
08 Hours
Delegates and Events, Exception Handling:
Delegates, Creating and using Delegates, Mucitcasting with Delegates.
Events: Event Sources, Event Handlers, Events and Delegates, Multiple Event Handlers.
Exception Handling: The try/catch/finally statement, Checked and Unchecked Statements.
Self-Study Topics: Custom Exceptions, Checked and Uncheked

Unit – IV 10 Hours

Data Access with ADO.NET:
Understanding ADO.NET: Describing the Architecture of ADO.NET, ADO.NET Entity Framework, Creating Connection Strings: Syntax for Connection Strings, Creating a Connection to a Database: SQL Server Database, OLEDB Database, ODBC Data Source, Creating a Command Object. Working with DataAdapters: Creating DataSet from DataAdapter, Paging with DataAdapters, Updating with DataAdapters, Adding Multiple Tables to a DataSet, Creating Data View. Using DataReader to Work with Databases.

Unit – V 10 Hours

Web App Development with ASP.NET:

Self-learning Topics: Graphical User Interface with Windows Forms

Books
1. NET 4.0 Programming (6-in-1), Black Book, Kogent Learning Solutions Inc., Wiely-Dream Tech Press
4. Bart De Smet: C# 4.0 Unleashed, Pearson Education- SAMS Series

Course Outcome (COs)
At the end of the course, the student will be able to

1. **Define** and **illustrate** the components of .NET framework
2. **Explain** the basic concepts of C# programming language, .NET framework and provide examples of real world problems
3. **Investigate** various concepts of C# programming language, such as encapsulation, operator overloading, indexers along with their internal representations
4. **Implement** various concepts of C# programming language such as delegates, events, and exception handling and demonstrate them
5. **Build** GUI application using Winforms as front end and ADO.NET technology as backend
6. **Develop** rich and dynamic website and web applications using ASP.NET technology

Bloom’s Level
L2
L2
L4
L3
L5
L5

Program Outcome (POs)

1. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
2. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications
3. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains
4. Postgraduates will demonstrate skills to use modern software tools and
technology to build and test applications

<table>
<thead>
<tr>
<th>Course delivery methods</th>
<th>Assessment methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lecture</td>
<td>1. Internal Assessment Test</td>
</tr>
<tr>
<td>2. Power-Point Presentation</td>
<td>2. Quiz</td>
</tr>
<tr>
<td>3. Video</td>
<td>3. Assignment/Seminar/Project</td>
</tr>
</tbody>
</table>

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

➢ Writing two IA test is compulsory.
➢ Minimum marks required to qualify for SEE : 20

Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):

1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.

2. Minimum marks required in SEE to pass: 20

3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.
Simulation and Modeling (Theory)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA53</th>
<th>Credits</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>CC</td>
<td>CIE Marks</td>
<td>50 Marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>4-0-0</td>
<td>SEE Marks</td>
<td>50 Marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives
1. Understanding the concepts of system, models in general and simulation models in particular
2. Developing simulation models using general purpose programming language Java, and simulation programming language –GPSS
3. Exploring the various techniques to generate random numbers and test for randomness
4. Developing an input model for a given system
5. Verify, Validate and perform output analysis of a simulation model.

Pre-requisites:
1) Degree level Mathematics and Statistics.
2) Software Engineering (MCA33).

Unit – I

Introduction to Simulation: When simulation is the appropriate tool and when it is not appropriate, Advantages and disadvantages of Simulation, Areas of application, Systems and system environment, Components of a system, Discrete and continuous systems, Model of a system, Types of Models, Discrete-Event System Simulation, Steps in a Simulation Study; Simulation examples: Simulation of queuing systems, Simulation of inventory systems

Self-learning Topics: Phases of Software engineering and queueing system

Unit – II

Self-learning Topics: Java programming and Differentiation and Integration in calculus

Unit – III

Self-learning Topics: Basic knowledge of Probability

Unit – IV

Queueing Models and Input Modeling: Characteristics of queuing systems, Queuing notation, Long-run measures of performance of queuing systems; Input Modeling: Data
Collection, Identifying the distribution with data, Parameter estimation, Goodness of Fit Tests, Selecting input models without data.

Self-learning Topics: Definition of model and queuing.

Unit – V 10 Hours

Verification and Validation of Simulation Models: Model building, verification and validation, Verification of simulation models, Calibration and validation of models, Output Analysis for a Single Model: Types of simulations with respect to output analysis, Stochastic nature of output data; Measures of performance and their estimation.

Self-learning Topics: Knowledge verification and validation in Software Engineering.

Books

Course Outcome (COs)

At the end of the course, the student will be able to

1. **Identify** the concepts of simulation used to develop models.
 Bloom’s Level L3
2. **Design and develop** models using simulation algorithm techniques.
 L6
3. **Design and develop** techniques to generate and test random numbers.
 L6
4. **Design and develop** an input model for a given simulation system.
 L6
5. **Solution** of Verification, Validation and Perform output analysis of a simulation model.
 L 6

Program Outcome of this course (POs)

PO No.

1. Post graduates will demonstrate knowledge of mathematics, computer applications, and management
 1
2. Post graduates will demonstrate an ability to identify, formulate and solve engineering problems
 2
3. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
 3
4. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains
 5
5. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications.
 6

Course delivery methods

1. **Lecture**
2. **Power-Point Presentation**
3. **Videos**

Assessment methods

1. **Internal Assessment Test**
2. **Quiz**
3. **Assignment/Seminar/Project**

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>
- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE : 20

Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Software Design Laboratory (Lab)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA56</th>
<th>Credits</th>
<th>02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>CC</td>
<td>CIE Marks</td>
<td>50 Marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>0-0-1</td>
<td>SEE Marks</td>
<td>50 Marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>42</td>
<td>SEE Duration</td>
<td>3 Hours for 50 marks</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Exploring object oriented design problems through the application of design patterns.
2. Developing high level class diagram, sequence diagram, use case diagram, activity diagram in UML for each pattern.
3. Emphasizing the consequences of applying each pattern to the overall software quality of a system.

Pre-requisites: JAVA Programming Language (MCA32).

Laboratory Exercises

Maximum 10 programs can be framed on the following concepts/strategies:
- UML Diagrams: Class diagrams, Use Case diagrams, sequence diagrams, activity diagrams
- Design patterns:

Books

2. Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma, Richard Helm, Ralph Johnson, John M. Vlissides
3. Head First Design Patterns, Elisabeth Freeman, Eric Freeman, Bert Bates, Kathy Sierra

Course Outcome (COs)

At the end of the course, the student will be able to

1. **Demonstrate** a thorough understanding of patterns and their underlying principles.
2. **Apply** design patterns to any given problem.
3. **Use** design patterns when developing software.

<table>
<thead>
<tr>
<th>Program Outcome of this course (POs)</th>
<th>PO No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems.</td>
<td>2</td>
</tr>
<tr>
<td>Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data.</td>
<td>3</td>
</tr>
<tr>
<td>Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains.</td>
<td>5</td>
</tr>
<tr>
<td>Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications.</td>
<td>6</td>
</tr>
</tbody>
</table>
Assessment methods

1. Internal Lab Test
2. Conduction of experiments in regular lab
3. Journal write-up

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Conduct of the lab</th>
<th>Journal submission</th>
<th>Lab test</th>
<th>Attendance</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Submission and certification of lab journal is compulsory to qualify for SEE.
- Minimum marks required to qualify for SEE: 25

Scheme of Semester End Examination (SEE):

1. It will be conducted for 50 marks of 3 hours duration.
2. Viva-voce shall be conducted for individual student and not in a group.
3. Minimum marks required in SEE to pass: 20
4. Initial write up: 20 marks
 Conduct of experiments: 20 marks
 Viva-voce: 10 marks
 Total: 50 marks
5. **NOTE: Change of program during lab examinations is not permitted**
Topics in Enterprise Architecture-2 Laboratory (C#.NET) (Lab)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA57</th>
<th>Credits</th>
<th>02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>CC</td>
<td>CIE Marks</td>
<td>50 Marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>0-0-1</td>
<td>SEE Marks</td>
<td>50 Marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>42</td>
<td>SEE Duration</td>
<td>3 Hours for 50 marks</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Providing a clear understanding of .Net technology using C# and implement object oriented techniques like encapsulation, polymorphism and inheritance using C# language
2. Imparting the knowledge to develop an application package with a database connection as a backend using the various programming constructs of C# along with the concepts of classes, objects, interfaces, structures, enumerations and delegates
3. Guiding to develop Windows Form application with database connectivity using ADO.NET technology
4. Guiding to develop Web application using ASP.NET for front-end and ADO.NET technology as back-end

Pre-requisites: Object Oriented Programming using C++ and Java (MCA24/MCA32).

Laboratory Exercises

The following experiments shall be conducted using Visual Studio 2008 or Visual Studio 2012.

PART A

Implement 7 programs on the following concepts:
- Overloading using Indexer
- Encapsulation using properties in C#
- Jagged Array
- Delegates
- Event Handling in C#
- Abstract Class and Abstract methods in C#
- Run Time Polymorphism in C#.

PART B

Implement 2 Windows applications with SQL Server as backend using the following GUI components:
MDI Forms, Menu Bar, Labels, TextBoxes, Buttons, Group Boxes, ListBox, RadioButtons, CheckBox, ComboBox, Date Time Picker etc.
Implement 1 Web application with SQL Server as backend using the following: Master Page, Content Pages, Hyperlinks to connect to content pages, Use GUI components like Labels, TextBoxes, Buttons, Group Boxes, ListBox, RadioButtons, CheckBox, ComboBox etc.

Coding Practice

1. Use of Good Programming practices: Use of standard naming conventions, declaration of variables, indentation, documentation, simplicity of logic, efficiency of logic, uniformity in GUI design, Efficient usage of IDE and its automatic features.
2. Generic and Reusable code.
3. Inclusions of exceptional cases. Better usability

Books
1. .NET 4.0 Programming, BlackBook, Kogent Learning Solutions Inc. Wiley-Dream Tech Press

Course Outcome (COs)

At the end of the course, the student will be able to

<table>
<thead>
<tr>
<th>Bloom’s Level</th>
<th>COs</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2</td>
<td>1. Illustrate object oriented programming like encapsulation, polymorphism and inheritance.</td>
</tr>
<tr>
<td>L6</td>
<td>2. Elaborate concepts like classes, objects, interfaces and delegates, jagged arrays, indexers, and event handling mechanism.</td>
</tr>
<tr>
<td>L6</td>
<td>3. Develop Windows Form application package with database connection using ADO.NET technology.</td>
</tr>
<tr>
<td>L6</td>
<td>4. Develop ASP application package with database connection using ADO.NET technology.</td>
</tr>
</tbody>
</table>

Program Outcome of this course (POs)

<table>
<thead>
<tr>
<th>PO No.</th>
<th>POs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Postgraduates will demonstrate knowledge of mathematics, computer applications, and management.</td>
</tr>
<tr>
<td>3</td>
<td>Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data.</td>
</tr>
<tr>
<td>6</td>
<td>Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications.</td>
</tr>
</tbody>
</table>

Assessment methods
1. Internal Lab Test
2. Conduction of experiments in regular lab
3. Journal write-up

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Conduct of the lab</th>
<th>Journal submission</th>
<th>Lab test</th>
<th>Attendance</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Submission and certification of lab journal is compulsory to qualify for SEE.
- Minimum marks required to qualify for SEE : 25

Scheme of Semester End Examination (SEE):

1. It will be conducted for 50 marks of 3 hours duration.
2. Minimum marks required in SEE to pass:20
 - Initial write up 20 marks
3. Conduct of experiments 20 marks
 Viva- voce 10 marks
4. NOTE: Change of program during lab examinations is not permitted

Project work-1 (Lab)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA58</th>
<th>Credits</th>
<th>02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>CC</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week:</td>
<td>L-T-P 0-0-1</td>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>42</td>
<td>SEE Duration</td>
<td>3 Hours for 50 marks</td>
</tr>
</tbody>
</table>

Pre-requisites: Software Development tools & technologies, Programming languages.

Guidelines

1. A team of only two students must develop the mini project. However during the examination, each student must demonstrate the project individually.

2. The team may implement project of their choice using any one of the technologies learnt during 1st to 5th Semester.

3. The team must submit a brief project report (25-30 pages) that must include the following:
 a. Introduction
 b. Literature survey
 c. Hardware & Software Requirements
 d. Software Requirements specification
 e. Detailed design
 f. Implementation (source code and screenshots to be included)
 g. Testing
 h. Conclusion
 i. Future enhancements.
 j. Bibliography

Course Outcome (COs)

At the end of the course, the student will be able to

<table>
<thead>
<tr>
<th>Bloom’s Level</th>
<th>PO No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L6</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POs</th>
<th>Bloom’s Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Develop applications using various tools and technologies, frameworks</td>
<td>L3</td>
</tr>
<tr>
<td>3. Build enterprise applications using database and server-side technologies</td>
<td>L6</td>
</tr>
<tr>
<td>4. Test and deploy competent mobile/console/web development solutions</td>
<td>L6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Program Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management.</td>
</tr>
<tr>
<td>2. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications.</td>
</tr>
<tr>
<td>3. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains.</td>
</tr>
<tr>
<td>4. Postgraduates will demonstrate skills to use modern software tools and</td>
</tr>
</tbody>
</table>
technology to build and test applications.

5. Postgraduates will demonstrate knowledge of professional and ethical responsibilities.

6. Postgraduates will be able to communicate effectively in both verbal and written form.

7. Postgraduates will show the understanding of impact of engineering solutions on the society as a successful entrepreneur or IT professional.

8. Postgraduates will develop confidence for self-education and ability for lifelong learning.

PO7

PO8

PO9

PO10

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Phase-I</th>
<th>Phase-II</th>
<th>Phase-III</th>
<th>Report</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Submission and certification of project report is compulsory to qualify for SEE.
- **Minimum marks required to qualify for SEE: 25**

Scheme of Semester End Examination (SEE):

1. It will be conducted for 50 marks of 3 hours duration.

2. **Viva-voce shall be conducted for individual student and not in a group.**

3. **Minimum marks required in SEE to pass: 20**

4. **Initial write up** | 20 marks |
 Conduct of experiments | 20 marks |
 Viva-voce | 10 marks |

5. **NOTE: Change of program during lab examinations is not permitted**
Elective Group-3

Data Mining and Data Warehousing

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA541</th>
<th>Credits</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>GE</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>4-0-0</td>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Introducing Data Mining, Data Warehousing and its applications in real world
2. Understanding OLAP (Online Analytical Processing) and Knowledge Discovery form Data (KDD)
3. Extracting of patterns representing knowledge stored in large databases using KDD
4. Applying data processing techniques, visualization, predictive modeling, association analysis, and clustering etc
5. Constructing decision tree -classification, association analysis-frequent item set and clustering
6. Applying Data Mining methods to handle object, spatial, multimedia, text and web data
7. Extracting hidden information, patterns from large data repository
8. Interpreting multidisciplinary projects contributing to various topics such as statistics, visualization, artificial intelligence and machine learning

Pre-requisites:
A course on Database management system (MCA22).

Unit – I 12 Hours
Data Warehousing and OLAP:
Introduction, Operational Data Store(ODS), Extraction Transformation and Loading(ETL), Data Warehouse basic concepts, design issues, Guidelines, metadata, Data Warehouse Modeling, Data Cube and OLAP, Introduction, Data cube implementations and operations, OLAP Software’s.

Unit – II 10 Hours
Data Mining:
Introduction, Motivating Challenges, Data Mining Tasks, Types of Data, Data Preprocessing, Measures of similarity and dissimilarity, Data Mining Applications

Unit – III 10 Hours
Association Analysis: Basic Concepts and Algorithms:
Frequent Item set Generation, Rule Generation, Compact Representation of Frequent Item sets, Alternative methods for generating Frequent Item sets, FP Growth Algorithm, Evaluation of Association Patterns.

Unit – IV 10 Hours
Classification Technique:
criteria for classification methods, Multiclass Problem.

Self-Learning Topics: Artificial neural network (ANN)

Unit – V

10 Hours

Clustering Techniques

Overview, features of cluster analysis, Types of Data and Computing Distance, Types of Cluster Analysis Methods, Partitional Methods, Hierarchical Methods, Density Based Methods, Quality and Validity of Cluster Analysis

Self-Learning Topics: Outlier Analysis, Web mining

Books

1. Pang-Ning Tan, Michael Steinbach, Vipin Kumar: Introduction to Data Mining, Addison- Wesley, 2005
4. Jiawei Han and Micheline Kamber: Data Mining - Concepts and Techniques, 2nd Edition, Morgan Kaufmann Publisher, 2006
5. Alex Berson and Stephen J. Smith: Data Warehousing, Data Mining, and OLAP Computing Mc Graw Hill Publisher, 1997

Course Outcome (COs)

At the end of the course, the student will be able to:

1. Define Data warehousing process and the ETL process. **Design** issues of Data Warehousing
2. **Explain** characteristics of OLTP and OLAP. Define and explain the Data cube operations in detail
3. **Define** Data Mining process and Knowledge Discovery Process (KDD).
4. **Explain** about data measurement and collection issues
5. **Explain** issues in data processing proximity calculation. **Assess** selection of proximity measure for given application problem
6. **Illustrate** the concept of Association Rules, importance of support and confidence terms in mining association rules for a given sample data set.
7. **Assess** about alternate approaches for generation of frequent item sets.
8. **Create** clusters on a given data set using clustering techniques.
9. **Analyze** and construct decision tree for a given snapshot of problem.
10. **Evaluate** the performance of specific classification model
11. **Discuss** classification and classification models for input data set.
12. **Demonstrate** FP-Growth algorithm for discovering frequent item sets.
13. **Construct** FP-tree for given set of transactions

Program Outcome (POs)

1. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains.
2. Postgraduates will demonstrate research based knowledge and research methods for addressing current issues in research trends.

Course delivery methods

1. Lecture
2. Power-Point Presentation
3. Video

Assessment methods

1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project
Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE: 20

Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.
COMPILER DESIGN

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA452</th>
<th>Credits</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>GE</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>4-0-0</td>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Providing a clear understanding of different forms of language translators, overview of the structure of typical Compiler and the trends in programming languages and machine architecture that are shaping Compilers
2. Encouraging the students to gain the in-depth knowledge of the different phases of compilation process and implementation approach of each of the phases
3. Making the students aware of use of modern software development environments containing tools such as language editors, debuggers version managers and so on
4. Getting acquainted with more specialized tools to help implementation of various phases of Compiler such as Parser generators, Scanner generators, syntax directed translation engines, Code generator tools, Data flow analysis engines and compiler construction toolkits
5. Making students to understand and appreciate the capability of designing any new language interface based on real time industry requirements

Pre-requisites:

1. Knowledge of Formal Languages and Automata Theory,
2. A course on Data structures (15MCA21) and System software (15MCA25)

Unit – I 11 Hours

Introduction: Lexical and Syntax Analysis:
Language processors, the structure of a Compilers, the evolution of programming languages, the science of building a compiler, Applications of Compiler technology, Programming language basics. Lexical analysis: The Role of Lexical Analyzer, Input Buffering, Specifications of Tokens, Recognition of Tokens. Syntax Analysis: Context-free Grammars, writing a Grammar, Top-down Parsing **Self-learning topics:** Operator Precedence Parser

Unit – II 11 Hours

Syntax Analysis:
Bottom-up Parsing, Introduction to LR Parsing, Simple LR. More powerful LR parsers, Using ambiguous grammars, Parser Generators. **Self-learning topics:** Automatic Parser Generator Using LEX and YACC tools.

Unit – III 10 Hours

Syntax-Directed Translation:
Syntax-Directed definitions, Evaluation order for SDDs, Applications of Syntax-directed translation, Syntax-directed translation schemes

Unit – IV

Intermediate Code Generation:
Variants of syntax trees, Three-address code; Types and declarations, Translation of expressions, Control flow, Back patching, Switch statements, and Intermediate code for procedures **Self-learning topics:** Translation with Type checking

Unit – V

Run-Time Environments and Code Generation:
Storage Organization, Stack allocation of space, Access to non-local data on the stack, Heap management, Introduction to garbage collection. Issues in the design of Code Generator, The Target language, Addresses in the target code, Basic blocks and Flow graphs, Optimization of basic blocks, A Simple Code Generator

Books

Course Outcome (COs)

At the end of the course, the student will be able to

1. **Identify and explain** the different phases of Compilation process and Compiler construction tools
2. **Identify and explain** the precise rules (GRAMMAR) that prescribes the syntactic structure of programming language constructs. **Identify and classify** the parsing techniques. Design and implement Top Down parsing. And Bottom up parsing
3. **Identify** the issues involved in the runtime environments.
4. **Identify** the issues in the design of Code Generator and list the primary tasks
5. **Identify and simplify** the use of ambiguous Grammar in the design of LR parsers. **Analyze** the Error recovery in LR parser
6. **Compare** Syntax Directed Definitions and Syntax Directed Translation

Bloom’s Level

L 2, L 3
L 2, 3, 4
L 3
L 3
L 2, L 4
L 1, L 3,
Schemes. **List** the Attributed Definitions and **Identify** the evaluation orders for the Attributes

Design Syntax Directed Translation Schemes to generate the Intermediate Representations Namely Syntax tree, Directed Acyclic Graph(DAG), Three Address Codes for Expressions, Control Flow, Switch statements and Procedures

Program Outcome of this course (POs)

PO No.

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems
3. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
4. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications
5. Postgraduates will be able to communicate effectively in both verbal and written form
6. Postgraduates can participate and succeed in competitive examinations.

Course delivery methods

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- **Minimum marks required to qualify for SEE : 20**

Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):

1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. **Minimum marks required in SEE to pass: 20**
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units. (Kindly MODIFY the changes in the pattern of SEE question paper, if required)

25
Service Oriented Architecture

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>15MCA543</td>
<td>04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>CIE Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE</td>
<td>50 marks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hours/week: L-T-P</th>
<th>SEE Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-0-0</td>
<td>50 marks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Hours:</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEE Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Providing a clear understanding of step by step processes for service oriented analysis and service oriented design
2. Imparting an in depth exploration of service orientation as a distinct design paradigm, including a comparison to object orientation
3. Emphasizing on providing descriptions of over dozen key web services technologies and WS-* specifications
4. Acquainting the students with the guidelines for Service Oriented Business Modelling and the creation of specialized service abstraction layers

Pre-requisites:
1. A course on software engineering (MCA33).
2. A course on web programming (MCA12).
3. Practical exposure to web services.

Unit – I 12 Hours
Introduction and Evolution of SOA:
Fundamentals of SOA, Common characteristics of contemporary SOA, Common tangible benefits of SOA, A SOA timeline (from XML to Web Services to SOA), The continuing evolution of SOA (standards organizations and Contributing vendors), The roots of SOA (comparing SOA to Past Architectures).

Unit – II 12 Hours
Web Services, Primitives of SOA, Contemporary SOA:
The Web Services framework, Services (as Web Services), Service Description (with WSDL), Messaging (with SOAP). Message Exchange patterns, Service Activity; Coordination, Atomic Transactions, Business Activities, Orchestration, Choreography, Addressing, Reliable Messaging, Correlation, Policies, Meta data Exchange, Security, Notification and eventing

Self-Learning Topics: Implementation of SOA concepts like coordination, orchestration and choreography

Unit – III 10 Hours
Principles of Service – Orientation:
Services- Orientation and the enterprise, Anatomy of service-oriented Architecture, Common Principles of Service Orientation; How Service Orientation principles inter relate, Service Orientation and object orientation, Native Web Service support for service orientation principles

Unit – IV 10 Hours
Service Layers:
Service Orientation and contemporary SOA, Service Layer Abstraction, Application service layer, Business Service Layer, Orchestration Service Layer, Agnostic Services, Service Layer Configuration scenarios
Self-Learning Topics: Case Study on Orchestration.

Unit – V
08 Hours

Business Process Design:
WS-BPEL Language basics, WS-Coordination overview, Service oriented business process redesign, WS-Addressing language basics, Ws-Reliable messaging language basics

Self-Learning Topics: Case Study on Infosys SOA

Books
2. Eric Newcomer, Greg Lomow, Understanding SOA with Web Services, Pearson Education, 2005

Course Outcome (COs)

At the end of the course, the student will be able to

1. **Explain** Service Oriented Architecture and its fundamental concepts.
 Bloom’s Level: L2
2. **Explain** the concepts of choreography and orchestration
 Bloom’s Level: L2
3. **Compare** critically SOA to traditional architectures
 Bloom’s Level: L2
4. **Identify** common tangible benefits of SOA.
 Bloom’s Level: L3
5. **Distinguish** between service-orientation and object-orientation
 Bloom’s Level: L4
6. **Assess** the basics of WS-BPEL language
 Bloom’s Level: L5
7. **Discuss** common characteristics of contemporary SOA
 Bloom’s Level: L6

Program Outcome (POs)

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
 PO No.: 1
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems
 PO No.: 2
3. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications
 PO No.: 4
4. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications
 PO No.: 6

Course delivery methods

1. Lecture
2. Power-Point Presentation
3. Video

Assessment methods

1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- **Minimum marks required to qualify for SEE : 20**
Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Digital Marketing

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA544</th>
<th>Credits</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>GE</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>4-0-0</td>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives
1. Adapting web marketing strategies and best practices
2. Understanding the concepts of web marketing
3. Defining web marketing goals; assigning resources and assessing growth opportunities
4. Keeping up-to-dates on best practices in web marketing

Pre-requisites:
NA

Unit – I 10 Hours
Introduction to Digital marketing
Now and before of digital marketing - digital marketing for the 21st century, Importance and scope of digital marketing; How web sites work – dynamic, static, blogs: search engines and types of search engines – meta, crawler, directories; How to create a blog

Unit – II 10 Hours
Concepts of Digital marketing

Self-learning topics:

Unit – III 10 Hours
Social Media
Introduction to social media, Examples of social media, Uses of social media, How companies use social media, Impact of social media in search Benefits of social media; Case studies of social media, SEO for social media, How to get started in social media. Social media profile creation and optimization

Self-learning topics:

Unit – IV 12 Hours
Advertisements
Online Ads – How online ads work : Interactive ads, Creative ads, Google Ad words, Online ad methods, Types of online advertisements, Face book ads, LinkedIn ads, Video ads, Text ads, Image ads, Local ads, Content network ads, Best practices, Campaign set up, Billing, Budget, Segment, Audience Effective Ads: Calculating ROI, Budget, How to choose your ad partner, Blogging for businesses Creative's& Content: Designing, Content development, Optimizing your ads, A/B testing, Conversion optimization, Landing page creation and optimization Face book strategy: Identify goals, Find Influencers, Understand tone (listening), Activation. How Face book advertisement works: The 3 Rs – Reporting, Results & Reallocation, Measuring ROI in Face book ads, Insights and Analytics for Face book Twitter Management: Twitter for business, Step by step instructions to Twitter, Key Definitions You Tube: You Tube branding, You Tube Ads, Getting started guide

Self-learning topics:
Unit – V

10 Hours

Digital Marketing Management
Digital Marketing Management: Role of web marketing manager, Web marketing department structure, Roles and responsibilities, Job description, Targets, goals. Digital Marketing Plan: Goals, objectives, KPI's, Market research, Value creation process. Strategic web marketing plan, Budgeting, Channel. Online Reputation Management: Brand management, Tools to monitor online brand reputation, Communication online best practices, Online press releases, Online newspaper, magazine ads, Google, Yahoo news

Books
1. Zimmerman Jan, Sahlin Doug; Social media marketing, All-in-one for dummies, Wiley India

Course Outcome (COs)
At the end of the course, the student will be able to

1. Assess the impact of digital technology on the practice of marketing
2. Analyze the use of different forms of digital marketing in the development of an online presence
3. Choose a publishing platform to build a web presence with integrated data collection and links to social media
4. Develop a plan for marketing a product of business online
5. Apply social media tools into a marketing communications strategy

Bloom’s Level
L 5
L 4
L 3
L 3

Program Outcome of this course (POs)

PO No.
1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
2. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
3. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications
4. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications

Assessment methods
1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Course delivery methods
1. Lecture
2. Power-Point Presentation
3. Video

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

➢ Writing two IA test is compulsory.
➢ Minimum marks required to qualify for SEE : 20
Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Software Project Management

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA545</th>
<th>Credits</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>GE</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week:</td>
<td>L-T-P</td>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Providing a clear understanding of basic issues in software project management and highlights the major categories of activities that every project manager undertakes
2. Providing an overview of project planning and project monitoring & control
3. Exploring the concepts related to effort and duration estimation techniques.
4. Exploring risk management approaches with special focus on management of risks of schedule slippage using PERT
5. Providing an insight into the issues of contract management, human resource management, team structure and quality management

Pre-requisites:
A course on Software Engineering (MCA33).

Unit – I

10 Hours
Introduction to Software Project Management: Project Definition, contract management, activities covered by software project management, overview of project planning, stepwise project planning Project Evaluation: Strategic assessment, technical assessment, cost benefit analysis.

Unit – II

10 Hours
Activity Planning: Objectives, Project Schedule, Sequencing and scheduling activities, network planning models, forward pass, backward pass, activity float, shortening project duration.
Self-Learning Topics: Activity on arrow networks

Unit – III

11 Hours
Risk Management: Risk management, nature of risk, types of risk, managing risk, hazard identification, hazard analysis, risk planning and control. Monitoring: creating framework, collecting the data, visualizing progress, cost monitoring, earned value, prioritizing monitoring, getting project back to target.

Unit – IV

10 Hours
Control: change control, managing contracts, types of contract, stages in contract placement, typical terms of a contract, contract management, acceptance

Unit – V

8 Hours
Managing people: introduction, understanding behavior, organizational behavior-background, selecting the right person for the job, instructions in the best methods, motivation.
Self-Learning Topics: The oldman, Hackmann job characteristics model.
Books

1. Bob Hughes, Mike cotterell, Software Project Management Tata Mcgraw Hill Fifth edition

Course Outcome (COs)

At the end of the course, the student will be able to

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Bloom’s Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Define the scope of ‘Software Project Management’. Describe the problems and concerns of software project managers</td>
<td>L 1</td>
</tr>
<tr>
<td>2.</td>
<td>Analyze the contents of a typical business plan and explain project portfolio management. Appraise the project planning approach in an organized step-by-step manner</td>
<td>L 4 & L5</td>
</tr>
<tr>
<td>3.</td>
<td>Design a critical path and a precedence network for a project</td>
<td>L 6</td>
</tr>
<tr>
<td>4.</td>
<td>Identify the factors putting a project at risk. Categorize and prioritize actions for risk elimination or containment</td>
<td>L 3</td>
</tr>
<tr>
<td>5.</td>
<td>Identify the resources required for a project and make the demand for resources more even throughout the life of a project</td>
<td>L 3</td>
</tr>
<tr>
<td>6.</td>
<td>Design a work plan and resource schedule to monitor the progress of projects.</td>
<td>L 6</td>
</tr>
<tr>
<td>7.</td>
<td>Distinguish between the different types of contract. Outline the contents of a contract for goods and services</td>
<td>L 4</td>
</tr>
<tr>
<td>8.</td>
<td>Identify some of the factors that influence people’s behavior in a project environment. Improve group working and analyze the coordination needs of a project</td>
<td>L 3</td>
</tr>
</tbody>
</table>

Program Outcome of this course (POs)

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>PO No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Postgraduates will demonstrate knowledge of mathematics, computer applications, and management</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains</td>
<td>5</td>
</tr>
<tr>
<td>5.</td>
<td>Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications</td>
<td>6</td>
</tr>
<tr>
<td>6.</td>
<td>Postgraduates will be able to communicate effectively in both verbal and written form</td>
<td>8</td>
</tr>
<tr>
<td>7.</td>
<td>Postgraduates can participate and succeed in competitive examinations</td>
<td>11</td>
</tr>
</tbody>
</table>

Course delivery methods

1. Lecture
2. Power-Point Presentation
3. Video

Assessment methods

1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project
Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks:</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- **Minimum marks required to qualify for SEE**: 20

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):

1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. **Minimum marks required in SEE to pass**: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.
Supply Chain Management

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course type</th>
<th>GE</th>
<th>CIE Marks</th>
<th>50 marks</th>
<th>SEE Marks</th>
<th>50 marks</th>
<th>SEE Duration</th>
<th>3 Hours for 100 marks</th>
</tr>
</thead>
</table>

Course learning objectives

1. Providing the strategic importance of good supply chain design, planning and operation for every firm and to train the students to identify how good supply chain management can be a competitive advantage, whereas weaknesses in the supply chain can hurt the performance of the firm.

2. Explaining the key drivers of supply chain performance like facilities, inventory, transportation and information.

3. Analyzing how these drivers may be used on a conceptual and practical level during supply chain design, planning and operations to improve performance.

4. Training the students with practical managerial levers and concepts that may be used to improve supply chain performance.

5. Utilizing analytical methodologies for supply chain analysis and understanding the managerial levers.

Pre-requisites:

1. Software engineering (MCA33).
2. Management information system (MCA35).

Unit – I

12 Hours

Introduction and basic aspects of supply chain management

What is a Supply Chain, Decision phases in a supply Chain, Process view of a Supply Chain, The importance of Supply Chain Flows, Examples of Supply Chains, Competitive and Supply Chain strategies, Achieving strategic fit, Expanding strategic scope, Drivers of Supply Chain Performance, A framework for structuring drivers, Facilities, Inventory, Transportation, Information, Obstacles to achieve strategic fit, The role of distribution in the Supply Chain, Factors influencing distribution network design, Design options for a distribution network, The value of distributors in the Supply Chain, Distribution Networks in practice.

Self-Learning Topics: Case Study on gateway, DELL and Wallmart

Unit – II

12 Hours

Network Design, Demand Forecasting, Aggregate Planning

Self-Learning Topics: Evaluating Network Design Decisions using Decision Trees.
Unit – III 8 Hours

Inventory Management
The role of cycle inventory in a supply Chain; Economies of scale to exploit fixed costs, quantity discounts; Short-term discounting; Managing multi-echelon cycle inventory; Estimating cycle inventory related costs in practice

Unit – IV 12 Hours

Transportation, Pricing and Revenue Management, Coordination
The role of transportation in the Supply Chain, Factors affecting transportation decisions, Modes of transportation and their performance characteristics, Design options for a transportation network, Trade-offs in transportation design, Tailored transportation, Routing and scheduling in transportation, Making transportation decisions in practice, The role of revenue management in Supply Chain, revenue management for multiple customer segments, perishable assets, seasonal demand, and bulk and spot contracts, Using revenue management in practice, Lack of Supply Chain coordination and Bullwhip effect, Effect of lack of coordination on performance, Obstacles to coordination in the Supply Chain, managerial levers to achieve coordination, Building strategic partnerships and trust within a supply Chain, Achieving coordination in practice

Unit – V 8 Hours

IT, Internet and Supply Chain

Books
4. Rahul V. Altekar: Supply Chain Management Concepts and Cases, PHI, 2005

Course Outcome (COs)

At the end of the course, the student will be able to

1. **Explain** the impact of supply chain decisions on the success of the firm
 Bloom’s Level L 2
2. **Identify** the drivers of supply chain performance and **explain** the role each driver plays in creating strategic fit between the supply chain strategies.
 Bloom’s Level L 2, L3
3. **Identify** the key factors to be considered when designing a distribution network **Discuss** the strengths and weaknesses of various distribution options
 Bloom’s Level L 3, L 6
4. **Define** and **discuss** the role of forecasting for both an enterprise and a
 Bloom’s Level L 1, L 6
5. **Explain** the basic trade-offs to consider when creating an aggregate plan. **Formulate** and solve basic aggregate planning problems

Program Outcome of this course (POs)

1. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications
2. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications
3. Postgraduates will demonstrate knowledge of professional and ethical responsibilities

Course delivery methods

1. Lecture
2. Power-Point Presentation
3. Video

Assessment methods

1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Seminar/ Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- **Minimum marks required to qualify for SEE : 20**

Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):

1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. **Minimum marks required in SEE to pass: 20**
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Digital Image Processing

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA547</th>
<th>Credits</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>GE</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>4-0-0</td>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives
2. Explaining the fundamentals theories and techniques of digital image processing.
3. Developing an understanding of basic image processing operations.
4. Exposing the students to current applications in the field of digital image processing.

Pre-requisites:
1. Digital Systems and Computer Organization (MCA13)
2. Discrete Mathematical Structures (MCA15)

Unit – I 10 Hours
Introduction

Unit – II 12 Hours
Image Enhancement in the Spatial Domain and Frequency Domain

Self-Study Topics: Homo-morphic Filtering

Unit – III 10 Hours
Morphological Image Processing and Image Segmentation
Dilation and erosion, opening and closing, Hit-or-Miss transformations, basic morphological algorithms, Detection of discontinues, edge linking and boundary detection, thresh holding, region –based segmentation

Unit – IV 10 Hours
Representation and Descriptors
Representation. Boundary Descriptors. Regional Descriptors. Use of Principal Components for Description. Relational Descriptors
Unit – V

Use of Image Processing in Pattern Recognition

Introduction to the tools of Matlab and Open CV.

Self-Study Topics: Case study on Object Identification, Biometrics and Content Based Image retrieval.

Books

Course Outcome (COs)

At the end of the course, the student will be able to

1. Explain the basic elements and applications of image processing
 Bloom’s Level L 2
2. Apply histogram equalization for image enhancement
 L 3
3. Utilize Matlab to implement different image processing tasks
 L 3
4. Analyze image sampling and quantization requirements and implications
 L 4
5. Design and implement two-dimensional spatial filters for image enhancement
 L 6

Program Outcome of this course (POs)

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
2. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
3. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications

Course delivery methods

1. Lecture
2. Power-Point Presentation
3. Video

Assessment methods

1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project
Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

➢ Writing two IA test is compulsory.
➢ Minimum marks required to qualify for SEE : 20

Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):

1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.
Elective Group-4

NoSQL

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA551</th>
<th>Credits</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>GE</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>4-0-0</td>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Introducing the concepts of big data and need of NoSQL.
2. Introducing different flavors of NoSQL like Redis, Hyper Table, MongoDB/ CouchDB/ Cassandra. Store.
3. Accessing the data using cloud, implement MapReduce to store using Hive, analyze the Big Data using Apache Pig High level language
4. Designing, storing and accessing the Big Data using NoSQL
5. Designing and Developing web application using NoSQL
6. Interpreting the administrative tasks and implementing administration of NoSQL while maintaining the web applications

Pre-requisites:

1. A course on Database management system (15MCA22).
2. Knowledge of database RDBMS

Unit – I 10 Hours
Introduction to NoSQL
Definition of NoSQL, History of NoSQL and Different NoSQL products, Exploring MondoDB Java/Ruby/Python, Interfacing and Interacting with NoSQL

Unit – II 12 Hours
NoSQL Basics
NoSQL Storage Architecture, CRUD operations with MongoDB, Querying, Modifying and Managing NoSQL Data stores, Indexing and ordering datasets (MongoDB/CouchDB /Cassandra)

Unit – III 10 Hours
Advanced NoSQL
NoSQL in CLOUD, Parallel Processing with Map Reduce, BigData with Hive
Self-learning topics: IBM Hadoop Introduction.

Unit – IV 10 Hours
Surveying Database Internals, migrating from RDBMS to NoSQL, Web Frameworks and NoSQL, using MySQL as a NoSQL-Coexistence.
Self-learning topics: Choosing among NoSQL Flavors, Tools and Utilities

Unit – V

Developing Web Application with NoSQL and NoSQL Administration PHP and MongoDB, Python and MongoDB, Creating Blog Application with PHP, NoSQL Database Administration

Books

Course Outcome (COs)

At the end of the course, the student will be able to

1. **Define** and **Express** the limitations of RDBMs, need of NoSQL for Big Data, different NoSQL products available in market

2. **Apply** CRUD operations with MongoDB, storing data and accessing data with MongoDB/CouchDB/Cassandra

3. **Construct** MapReduce – parallel programming model for distributed processing on large data sets, on a cluster of computers

4. **Create** Apache Hive – data warehouse infrastructure on Hadoop and Analyze Big Data with Hive using Apache Pig

5. **Develop** Web applications using NoSQL, Python and PHP

Bloom’s Level

1. **L 1**
2. **L 3**
3. **L 3**
4. **L 6**
5. **L 6**

Program Outcome of course (POs)

1. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data

2. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains

3. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications

PO No.

1.
2.
3.

Course delivery methods

1. Lecture
2. Power-Point Presentation
3. Video

Assessment methods

1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project
Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE : 20

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.
Course Code | 15MCA552 | Credits | 04
---|---|---|---
Course type | GE | CIE Marks | 50 marks
Hours/week: L-T-P | 4-0-0 | SEE Marks | 50 marks
Total Hours: | 52 | SEE Duration | 3 Hours for 100 marks

Course learning objectives

1. Training a learner to initiate client-server communication using various Asynchronous JavaScript and XML (Ajax) techniques and patterns
2. Enabling a learner to implement web applications using Hypertext Preprocessor (PHP), Cascading Style Sheets (CSS), Extensible Markup Language (XML), and Document Object Model (DOM) using Ajax.
3. Focusing on knowledge of Flex Framework, Flex technologies and designing Rich Internet Applications rapidly using Flex by assembling off-the-shelf components including: User Interface (UI) controls, layout containers, and data models
4. Using Macromedia Flex Markup Language (MXML), Actionscript, and the Flex class library to model data, validate data, format data, and manage states in a Flex Application

Pre-requisites:

1. Web Programming (15MCA12).
2. Internet Web Programming (15MCA43)

Unit – I

10 Hours

Introduction to Ajax Technologies, Ajax Patterns and JavaScript Object Notation

Unit – II

10 Hours

Full Throttle Ajax with Extensible Markup Language (XML) and Cascading Style Sheets (CSS)

Handling multiple XMLHttpRequest requests, using two XMLHttpRequest requests, using an array of XMLHttpRequest requests, using inner functions and multiple XMLHttpRequest requests, Handling JavaScript sent from server, Overcoming browser caching. Working with XML in JavaScript, navigating through XML documents, Retrieving XML element data, Retrieving XML element attribute data. Getting text noticed with CSS, Styling fonts with CSS, Styling colors with CSS, setting absolute positions using CSS

Unit – III

10 Hours

Ajax with Hypertext Preprocessor (PHP) and Document Object Model (DOM)

Displaying all the data in a form, working with PHP server variable, sending form data in arrays, Creating single-page PHP applications, Validating numbers, Validating text. Introducing the Document Object Model (DOM), Appending elements using the DOM, replacing elements using the DOM, Handling Ajax timeouts
Self-learning topics: Downloading images with Ajax

Unit – IV 12 Hours
Understanding Flex Environment, Layouts, Macromedia Flex Markup Language (MXML) and ActionScript

Unit – V 10 Hours
Working with States, Data Models and Data Binding
Working with Data: Using Data Models, Data Binding, Enabling Data Binding for Custom Classes, Data Binding Examples, Building data binding proxies. Validating and Formatting Data: Validating user input, Formatting Data.
Self-learning topics: Client Data Communication in Flex Application.

Books
1. Nicholas C Zakasetal: Processional AJAX, Wiley India Publications
3. ChaficKazon and Joey Lott: Programming Flex 3, O’Reilly, 2011

Course Outcome (COs)

At the end of the course, the student will be able to

1. Explain history, principles and technologies behind Ajax
2. Assess the management of states in Flex Application
3. Develop Ajax applications using Hidden Frames and XMLHttpRequest object in conjunction with PHP, XML, CSS and DOM
4. Develop Rich Internet Applications using Flex Framework and Flex Elements like MXML and ActionScript
5. Design Flex Application using Data Models and Data Binding

Bloom’s Level
L 2
L 5
L 6
L 6
L 6
Program Outcome of this course (POs) PO No.
1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management 1
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems 2
3. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data 3
4. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications 4
5. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains 5
6. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications 6

Course delivery methods
1. Lecture
2. Power-Point Presentation
3. Video

Assessment methods
1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE : 20

Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.
Course learning objectives

1. Providing a clear understanding of problem domain, Analyzing and designing the solution for a given problem with representation of the solution in the form of Networks
2. Exploring fundamental concepts and introducing Key Challenges in Managing Information, Information Lifecycle Components of Storage System Environment, Disk Drive Components, Disk Drive Performance

Pre-requisites:
1. computer network (MCA31).

Unit – I
12 Hours

Unit – II
12 Hours

Unit – III
8 Hours
Content-Addressed Storage, Storage Virtualization: Fixed Content and Archives, Types Business Continuity of Archive, Features and Benefits of CAS, CAS Architecture, Object Storage and Retrieval in CAS, CAS Examples. Forms of Virtualization, SNIA Storage Virtualization Taxonomy, Storage Virtualizations Configurations, Storage Virtualization Challenges, types of Storage Virtualization

Unit – IV
8 Hours
Topologies, Backup in NAS Environments, Backup Technologies

Unit – V 12 Hours

Local Replication, Remote Replication, Securing the Storage Infrastructure, Managing the Storage Infrastructure: Source and Target, Uses of Local Replicas, Data Consistency, Local Replication Technologies, Restore and Restart Considerations, Creating Multiple Replicas, Management Interface, Modes of Remote Replication, Remote Relocation Technologies, Network Infrastructure

Books
1. G. Somasundaram, Alok Shrivastava (Editors): Information Storage and Management: EMC Education Services, Wiley- India, 2009
2. Ulf Troppens, Rainer Erkens and Wolfgang Muller: Storage Networks Explained, Wiley India, 2003

Course Outcome (COs)

At the end of the course, the student will be able to

1. Develop Proficiency in Storage fundamentals and Storage Architecture
2. Evaluate Network Attached Storage - NAS protocols, Live configuration of NAS
3. Apply Backup, Data Replication, Storage Virtualization and Storage systems Monitoring Alerts, Reports

Program Outcome of this course (POs)

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems
6. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications

Course delivery methods
1. Lecture
2. Power-Point Presentation
3. Video

Assessment methods
1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project
Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE : 20

Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):

1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.
Information and Network Security

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA554</th>
<th>Credits</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>GE</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>4-0-0</td>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives
1. Providing a clear understanding of fundamentals of Cryptography
2. Exploring knowledge on standard algorithms used to provide confidentiality, integrity and authenticity
3. Describing the various key distribution and management schemes
4. Implementing encryption techniques to secure data in transit across data networks
5. Designing security applications in the field of Information technology and learning Electronic mail security

Pre-requisites:
2. Background in system programming (MCA25),
3. Statistics and probability are helpful

Unit – I
Planning for Security and Security Technology-1:
Introduction; Information Security Policy, Standards, and Practices; The Information Security Blue Print; Contingency plan and a model for contingency plan.
Introduction; Physical design; Firewalls; Protecting Remote Connections

Unit – II
Security Technology– 2 and Cryptography:
Introduction; Intrusion Detection Systems (IDS); Honey Pots, Honey Nets, and Padded cell systems; Scanning and Analysis Tools.
Introduction; A short History of Cryptography; Principles of Cryptography; Cryptography Tools; Attacks on Cryptosystems
Self-Learning Topics: Access control devices

Unit – III
Introduction to Network Security, Authentication Applications:
Attacks, services, and Mechanisms; Security Attacks; Security Services; A model for Internetwork Security; Internet Standards and RFCs. Kerberos, X.509 Directory Authentication Service.

Unit – IV
Electronic Mail Security and IP Security:
Pretty Good Privacy (PGP); S/MIME.
IP Security Overview; IP Security Architecture; Authentication Header; Encapsulating Security Payload; Combining Security Associations; Key Management.

Unit – V
Web Security:
Web security requirements; Secure Socket layer (SSL) and Transport layer Security (TLS);
Secure Electronic Transaction (SET).

Self-Learning Topics: Network management security.

Books

Course Outcome (COs)

At the end of the course, the student will be able to

1. **Identify** the security issues in the network and resolve it
2. **Analyze** the vulnerabilities in any computing system and hence be able to design a security solution
3. **Evaluate** security mechanisms using rigorous approaches, including theoretical

Bloom’s Level

L 3

L 4

L 5

Program Outcome (POs)

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
2. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains
3. Postgraduates will show the understanding of impact of engineering solutions on the society as a successful entrepreneur or IT professional

PO No.

1

5

9

Course delivery methods

1. Lecture
2. Power-Point Presentation
3. Video

Assessment methods

1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

➢ Writing two IA test is compulsory.
➢ **Minimum marks required to qualify for SEE : 20**

Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):

1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. **Minimum marks required in SEE to pass: 20**
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Course Code 15MCA555
Course type GE
Credits 04
CIE Marks 50 marks
Hours/week: L-T-P 4-0-0
SEE Marks 50 marks
Total Hours: 52
SEE Duration 3 Hours for 100 marks

Course learning objectives
1. Introducing the design issues in ad hoc and sensor networks.
2. Emphasis on the different types of MAC protocols,
3. Guiding about the different types of ad hoc routing protocols.
4. Exposing the TCP issues in ad hoc networks.
5. Introducing the architecture and protocols of wireless sensor networks.

Pre-requisites:
A course on computer network (MCA31)

Unit – I 12 Hours
Introduction:

Unit – II 10 Hours
MAC PROTOCOLS FOR AD HOC WIRELESS NETWORKS
Issues in designing a MAC Protocol- Classification of MAC Protocols- Contention based protocols- Contention based protocols with Reservation Mechanisms- Contention based protocols with Scheduling Mechanisms – Multichannel MAC-IEEE 802.11

Unit – III 10 Hours
ROUTING PROTOCOLS AND TRANSPORT LAYER IN AD HOC WIRELESS NETWORKS
Issues in designing a routing and Transport Layer protocol for Ad hoc networks- proactive routing, reactive routing (on-demand).

Unit – IV 10 Hours
Introduction to Wireless Sensor Networks(WSN)
Introduction, Basic overview to the Technology, Applications of wireless sensor Networks, Basic Wireless Transmission Technology and Systems.

Unit – V 10 Hours
MAC and Routing Protocols
Self-Learning Topics: Directed Diffusion, Geographical Routing
Books

Course Outcome (COs)

At the end of the course, the student will be able to

Bloom’s Level	1. List the advantages and Disadvantages of using Protocols	L 1
2. Explain the objectives and functions of Modern Network Systems	L 2	
3. Explain the Ad-Hoc networks	L 2	
4. Identify MAC Protocols	L 3	
5. Apply the Simulation and Modelling of Protocols in creating wireless mobile Networks	L 3	

Program Outcome of this course (POs)

PO No.
1. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems 2
2. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data 3
3. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications 4
4. Postgraduates will be able to communicate effectively in both verbal and written form. 8
5. Postgraduates can participate and succeed in competitive examinations 11

Course delivery methods
1. Lecture
2. Power-Point Presentation
3. Video

Assessment methods
1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE : 20
Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):

1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.

2. **Minimum marks required in SEE to pass: 20**

3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

* * *
Professional Communication and Ethics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA556</th>
<th>Credits</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>GE</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>4-0-0</td>
<td>SEE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>52</td>
<td>SEE Duration</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Equipping the students with skill set to face the challenges in communication, primarily in a technical milieu by covering the four dimensions of communications skills, namely listening, speaking, reading and writing
2. Introducing the basics of communication, barriers in communications, use of technology in communication and active listening
3. Learning effective presentation strategies and skills to give seminars/presentations, face interviews and participate in group discussions
4. Emphasizing on the constituents of effective writing and reading comprehensions, enabling students to improve on their vocabulary, sentence construction, paragraph development and reading strategies
5. Implementing various writing strategies to write various business letters, job applications, resume, and e-mail messages
6. Introducing Ethics in Engineering with emphasis on moral problems engineers face in the corporate setting
7. Stimulating critical and responsible reflection on the moral issues surrounding engineering practice and providing the conceptual tools necessary for pursuing those issues

Pre-requisites:
Fundamentals of English Language and English Grammar.

Unit – I

8 Hours

Basics of Technical Communication

Unit – II

12 Hours

Oral Forms in Communication

Unit – III

12 Hours

Constituents of Effective Writing and Professional Writing

Unit – IV 7 Hours

Reading and Language Comprehension
Reading – A Communicative Process, Reading with Purpose, Reading Different Kinds of Text, Active and Passive Reading, Reading Speed, Reading Skills, Vocabulary Skills, Eye Reading and Visual Perception, Prediction Techniques, Scanning Skills, Skimming Skills, Intensive Reading Skills

Unit – V 13 Hours

Ethics in Engineering
What is Engineering Ethics? Why Study Engineering Ethics? Professions and Professionalism, Professional Ideals and Virtues, Theories about Right Action, Engineering as Experimentation, Engineers as Responsible Experimenters, Code of Ethics, Collegiality and Loyalty, Whistle-Blowing and Computer Ethics

Self-Learning Topics: Engineers as Managers, Consultants and Leaders

Books

Course Outcome (COs)

At the end of the course, the student will be able to

1. Identify Process, Levels and Flow of Communication L 3
2. Evaluate Barriers of Communication and the impact of Technology in communication L 5
3. Apply the traits of a good listener and effective presentation strategies in oral communication L 3
4. Compose effective writing using appropriate words, phrases and the art of condensation L 6
5. Improve the art of reading using reading techniques L 6
6. Construct effective Business Letters, Resumes, Job Applications, and E-mail messages L 6
7. Analyze the role of Engineers with their social responsibilities to reflect critically on the moral dilemmas they will confront in their profession L 4
Program Outcome of this course (POs) PO No.
1. Postgraduates will demonstrate knowledge of professional and ethical responsibilities. 7
2. Postgraduates will be able to communicate effectively in both verbal and written form 8
3. Postgraduates will show the understanding of impact of engineering solutions on the society as a successful entrepreneur or IT professional 9

Course delivery methods
1. Lecture
2. Power-Point Presentation
3. Video

Assessment methods
1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE: 20

Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Pattern Recognition

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course type</th>
<th>CIE Marks</th>
<th>Hours/week: L-T-P</th>
<th>SEE Marks</th>
<th>Total Hours</th>
<th>SEE Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>15MCA557</td>
<td>04</td>
<td>GE</td>
<td>50 marks</td>
<td>4-0-0</td>
<td>50 marks</td>
<td>52</td>
<td>3 Hours for 100 marks</td>
</tr>
</tbody>
</table>

Course learning objectives
1. Fundamentals of pattern recognition system
2. Feature extraction and pattern classification algorithms.
3. Unsupervised classification or clustering techniques.
4. Applications of pattern classification algorithm for a pattern recognition problem

Pre-requisites:
1. Computer programming language(C) (MCA14).
2. Discrete Mathematics (MCA15).

Unit – I 13 Hours
Introduction and Bayesian Decision Theory: Machine perception, an example; Pattern Recognition System; The Design Cycle; Learning and Adaptation. Introduction, Bayesian Decision Theory; Continuous Features, Minimum error rate, classification, classifiers, discriminant functions, and decision surfaces; The normal density; Discriminant functions for the norm.

Unit – II 13 Hours
Maximum-Likelihood And Bayesian Parameter Estimation and Non-Parametric Techniques:
Introduction; maximum-likelihood estimation; Bayesian Estimation; Bayesian parameter estimation: Gaussian Case, general theory; Hidden Markov Models. Density Estimation; Parzen windows; kn Nearest-Neighbor Estimation; The Nearest-Neighbor Rule; Metrics and Nearest-Neighbor Classification

Unit – III 6 Hours
Linear Discriminant Functions: Introduction; Linear Discriminant Functions and Decision Surfaces; Generalized Linear Discriminant Functions; The Two-Category Linearly Separable case; Minimizing the Perception Criterion Functions; Relaxation Procedures; Nonseparable Behavior; Minimum Squared-Error procedures
Self-learning topics: The Ho-Kashyap procedures

Unit – IV 13 Hours
Stochastic Methods and Non-Metric Methods: Introduction; Stochastic Search; Boltzmann Learning; Boltzmann Networks and Graphical Models; Evolutionary Method Decision Trees; CART; Other Tree Methods; Recognition with Strings; Grammatical Methods

Unit – V 7 Hours
Unsupervised Learning and Clustering: Introduction; Mixture Densities and Identifiably; Maximum-Likelihood Estimates; Application to Normal Mixtures; Unsupervised Bayesian Learning; Data Description and Clustering.
Self-learning topics: Criterion Functions for Clustering.
Books

Course Outcome (COs)

At the end of the course, the student will be able to

1. **List** learning algorithms for unsupervised tasks
2. **Construct** document and present a literature review on a topic related to Machine Learning and Pattern Recognition
3. **Identify** areas where Pattern Recognition and Machine Learning can offer a solution
4. **Discuss** the strength and limitations of some techniques used in computational Machine Learning for classification, regression and density estimation problems
5. **Discuss** some discriminative, generative and kernel based techniques

Program Outcome of this course (POs)

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems
3. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications
4. Postgraduates will show the understanding of impact of engineering solutions on the society as a successful entrepreneur or IT professional

Course delivery methods

1. Lecture
2. Power-Point Presentation
3. Video

Assessment methods

1. Internal Assessment Test
2. Quiz
3. Assignment/Seminar/Project

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Average of best two IA tests out of three</th>
<th>Average of two assignments/ Course Seminar/ Course Project</th>
<th>Quiz</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Writing two IA test is compulsory.
- Minimum marks required to qualify for SEE: 20
Self-Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2. Minimum marks required in SEE to pass: 20
3. Question paper contains 08 questions each carrying 20 marks. Students have to answer FIVE full questions. SEE question paper will have two compulsory questions (any 2 units) and choice will be given in the remaining three units.

Bloom’s Taxonomy in its various forms represents the process of learning. It was developed in 1956 by Benjamin Bloom and modified during the 1990’s by a new group of cognitive psychologists, led by Lorin Anderson (a former student of Bloom’s) to make it relevant to the 21st century. The revised taxonomy given below emphasizes what a learner “Can Do”.

Lower order thinking skills (LOTS)

<table>
<thead>
<tr>
<th>Level (LOTS)</th>
<th>Skill</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Remembering</td>
<td>Retrieve relevant knowledge from memory.</td>
</tr>
<tr>
<td>L2</td>
<td>Understanding</td>
<td>Construct meaning from instructional material, including oral, written, and graphic communication.</td>
</tr>
<tr>
<td>L3</td>
<td>Applying</td>
<td>Carry out or use a procedure in a given situation – using learned knowledge.</td>
</tr>
</tbody>
</table>

Higher order thinking skills (HOTS)

<table>
<thead>
<tr>
<th>Level (HOTS)</th>
<th>Skill</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L4</td>
<td>Analyzing</td>
<td>Break down knowledge into its components and determine the relationships of the components to one another and then how they relate to an overall structure or task.</td>
</tr>
<tr>
<td>L5</td>
<td>Evaluating</td>
<td>Make judgments based on criteria and standards, using previously learned knowledge.</td>
</tr>
<tr>
<td>L6</td>
<td>Creating</td>
<td>Combining or reorganizing elements to form a coherent or functional whole or into a new pattern, structure or idea.</td>
</tr>
</tbody>
</table>
Department of Master of Computer Applications

Scheme and Syllabus (2015 Scheme)
6th Semester Master of Computer Applications (M.C.A.)
INSTITUTION VISION

Gogte Institute of Technology shall stand out as an institution of excellence in technical education and in training individuals for outstanding caliber, character coupled with creativity and entrepreneurial skills.

MISSION

To train the students to become Quality Engineers with High Standards of Professionalism and Ethics who have Positive Attitude, a Perfect blend of Techno-Managerial Skills and Problem solving ability with an analytical and innovative mindset.

QUALITY POLICY

- Imparting value added technical education with state-of-the-art technology in a congenial, disciplined and a research oriented environment.
- Fostering cultural, ethical, moral and social values in the human resources of the institution.
- Reinforcing our bonds with the Parents, Industry, Alumni, and to seek their suggestions for innovating and excelling in every sphere of quality education.

DEPARTMENT VISION

Successful Career and Entrepreneurship: The ability to employ modern computer languages, technologies, environments, and platforms in creating innovative career paths to be an entrepreneur, and a zest for higher studies.

MISSION

Successful Career and Entrepreneurship: The ability to employ modern computer languages, technologies, environments, and platforms in creating innovative career paths to be an entrepreneur, and a zest for higher studies.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

1. The graduates will be inculcated with substantial knowledge of mathematics, computer science and its applications so that they become proficient in providing solutions to computing problems
2. The graduates will be trained to develop the ability to analyze, model, design, implement and verify a computing system to meet specified requirements while considering real-world constraints
3. The graduates will be provided with a platform to explore latest trends and technologies in computing solutions, adequate training & opportunities to work as a team on interdisciplinary projects with effective communication skills and leadership qualities
4. The graduates will be made aware on the benefits of life-long learning and will be intro and codes of professional practice
PROGRAM OUTCOMES (POs)
1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems
3. Postgraduates will demonstrate an ability to design and conduct experiments, analyze and interpret data
4. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications
5. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains
6. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications
7. Postgraduates will demonstrate knowledge of professional and ethical responsibilities
8. Postgraduates will be able to communicate effectively in both verbal and written form
9. Postgraduates will show the understanding of impact of engineering solutions on the society as a successful entrepreneur or IT professional
10. Postgraduates will develop confidence for self-education and ability for life-long learning
11. Postgraduates can participate and succeed in competitive examinations
 Postgraduates will use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions

PROGRAM SPECIFIC OUTCOMES (PSOs)
Professional Skills: The ability to understand, analyze and develop computer programs in the areas related to algorithms, system software, simulation, software design, web design, big data analytics, and networking for efficient design of computer-based systems of varying complexity
2. Problem-Solving Skills: The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality application for business success
Successful Career and Entrepreneurship: The ability to employ modern computer languages, technologies, environments, and platforms in creating innovative career paths to be an entrepreneur, and a zest for higher studies.
Scheme of Teaching

VI Semester

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>L-T-P</th>
<th>Credits</th>
<th>Contact Hours</th>
<th>CIE Marks</th>
<th>SEE Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td>15MCA61</td>
<td>Internship</td>
<td>CC</td>
<td>NA</td>
<td>2</td>
<td>Full Time</td>
<td>50</td>
<td>--</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15MCA62</td>
<td>Seminar</td>
<td>SC</td>
<td>0-2-0</td>
<td>2</td>
<td>2</td>
<td>50</td>
<td>--</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15MCA63</td>
<td>Project Work-2</td>
<td>CC</td>
<td>NA</td>
<td>12</td>
<td>Full Time</td>
<td>50</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>4</td>
<td>15MCA64</td>
<td>Certification-1</td>
<td>CT</td>
<td>NA</td>
<td>1</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15MCA65</td>
<td>Certification-2</td>
<td>CT</td>
<td>NA</td>
<td>1</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>NA</td>
<td>18</td>
<td>--</td>
<td>150</td>
<td>100</td>
<td>50</td>
<td>300</td>
</tr>
</tbody>
</table>

CIE: Continuous Internal Evaluation **SEE:** Semester End Examination **L:** Lecture **T:** Tutorial **P:** Practical
CC: Compulsory Core **SC:** Seminar Component **NA:** Not Applicable

15MCA64 and 15MCA65: Certification Courses

Please refer to the III (Third) semester Scheme for guidelines
Internship

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>15MCA61</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>CIE Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>50 marks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hours/week: L-T-P</th>
<th>SEE Marks</th>
<th>Total Hours:</th>
<th>SEE Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>--</td>
<td>Full Time</td>
<td>--</td>
</tr>
</tbody>
</table>

Guidelines for Internship:

1. The student shall undergo Internship for 4-6 weeks during vacations and Internship should be presented along with the report by the end of 6 weeks.
2. The Internship should be carried out in Industry/R&D Labs/ Institutions.
3. Students should submit Internship offer letter to DPGC committee before starting of the Internship.
4. After completion of Internship students have to give presentation and submit report before the end of the first month of 6th semester to the department.
5. Report and Presentation should consists of following information:
 1. Brief history and profile of the company
 2. Industry Training
 3. Technology Learnt
 4. Programming Skills developed
 5. Outcome of 3 Weeks of Internship
 6. Problem Statement
 7. Technologies Used
 8. Modules developed
 9. Skills set developed

6. Evaluation Method: Internship for M.C.A. should be evaluated for 50 Marks as CIE. CIE includes 20 marks for external guide (Industry person), 20 marks for report, assessed by internal guide and 10 marks for presentation.

Seminar

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>15MCA62</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>CIE Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC</td>
<td>50 marks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hours/week: L-T-P</th>
<th>SEE Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2-0</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Hours:</th>
<th>SEE Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>--</td>
</tr>
</tbody>
</table>

Course learning objectives

1. Providing a systematic and independent study of the state of the art topics in a broad area of his / her specialization.
2. To get acquainted thoroughly with the broad area of the student’s final year project work and serve as necessary groundwork for the successful carrying out of the project work.
3. Understand aspects of a seminar presentation.
4. Focusing on organization of the material.
5. Learning technical writing.
6. Assess the communication capability of the student to present a technical topic.
7. To train students to face audience and present their ideas and thus creating in them self-esteem and courage that are essential for an IT Professional.

Guidelines

1. This course is mandatory for all students pursuing MCA degree.
2. Seminar topics to be chosen from any reputed journals like IEEE/ Springer/Elsevier (Science Direct)/Scopus/DBLP indexed conference papers etc.
3. The CIE marks for Seminar is 50. This factor is to be monitored by the consent of the guide along with panel.

Distribution of marks:

<table>
<thead>
<tr>
<th>Topic relevance</th>
<th>Content</th>
<th>Presentation</th>
<th>Impact factor/significance of conference / journal</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>20</td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>

Note: minimum duration for presentation is 12 minutes + 3 minutes QA

4. Total credits for seminar (MCA62) are 2.
5. Student must / should select the topic for the seminar from the domain in which he/she is doing project work for the final semester. (MCA63)
6. Students should present the seminar on cutting edge/emerging/state of the art technologies in the field of Computer Science and Applications.
7. Total contact hour for seminar is 12. The student has to contact his/ her guide and discuss the topic and the publication or presentation details.
8. Guide has the authority to disapprove the topic selected (if found incompetent).
9. Students must submit seminar topic to the guide before second phase of evaluation of project work-2 (MCA63).
10. The student must then prepare a research paper on selected topic and present / publish it in any national / International conference or journal.
11. The student must present the seminar to the panel in the last phase of Project Work-2 evaluation.
12. At the time of evaluation, student should submit all the details viz. conference certificate or hard copy of the paper published.
13. Panel has the full authority to evaluate the seminar.
14. Final decision regarding the seminar is held reserved by DPGC.
15. Duration of the seminar should be approximately 45 minutes.
16. Student should submit the write up on seminar topic containing at least 10 pages.

Course Outcome (COs)

At the end of the course, the student will be able to:

Bloom’s Level
1. **Identify** and **explain** aspects of a seminar presentation L2, L3
2. **Evaluate** literature survey L5
3. **Explain** Presentation of slides L2
4. **Design** and **develop** the material in organized manner L6
5. **Elaborate** active involvement in seminar. L6
6. **Summarize** with a technical report. L2

Program Outcome of this course (POs)

PO No.
1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management. 2
2. Postgraduates will demonstrate an ability to identify, formulate and solve engineering problems. 3
3. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications. 6
4. Postgraduates will be able to communicate effectively in both verbal and written form. 8
5. Postgraduates will develop confidence for self-education and ability for life-long learning. 10
6. Postgraduates can participate and succeed in competitive examinations 11
7. Postgraduates will use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions 12

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Maximum Marks: 50</th>
<th>Topic relevance</th>
<th>Content</th>
<th>Presentation</th>
<th>Impact factor/significance</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

- Submission and certification of seminar report to qualify for SEE.
- Minimum marks required to qualify for SEE: 25

Project Work-2 (Project)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>15MCA63</th>
<th>Credits</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>CC</td>
<td>CIE Marks</td>
<td>50 marks</td>
</tr>
<tr>
<td>Hours/week: L-T-P</td>
<td>N/A</td>
<td>SEE Marks</td>
<td>150 marks</td>
</tr>
<tr>
<td>Total Hours:</td>
<td>Full Time</td>
<td>SEE Duration</td>
<td>3 Hours for 200 marks</td>
</tr>
</tbody>
</table>

Pre-requisites: Software Development tools & technologies, Programming languages.

Guidelines

1. The Project should be carried out in his/her Institution or any Industry/R&D Labs based on relevant tools and techniques learned in MCA courses / internship.
2. Project should be real time work, project for minimum 12 weeks of duration.
3. Project work may be application oriented or research oriented as per student and guide's interest. Therefore, the project reports will vary depending on whether it is application oriented project or research based project.
4. Seminars / presentation should be given on Synopsis, Software Requirement Specifications, Design and Project Completion levels.
5. Students should submit project offer letter to department project committee before starting of the project.
6. If project report is not as per the format and not a real-time project, external examiners will have every right to reject the project.
7. Students are required to show their project code demo along with their power point slide show during their viva-voce exams as an added advantage.
8. The outcome of the project should be encouraged to present/publish in reviewed Conferences/Journals as papers.
9. Problem formulation, literature survey and submission of synopsis of the project to the Head of the Department with approval of the guide within Three weeks from the commencement of 6th semester.
10. Submission and certification of project report is compulsory to qualify for SEE.
11. Student has to submit the Weekly work progress report (Fig.1) duly signed with seal by External Guide, to the department.
12. Failing to meet the above process by candidate / external guide lead to disqualification of the candidate’s project work-2 (15MCA63) course and eventually award of the degree.

Guidelines for the Preparation of Project Reports

1. **Printing Area:** The margins should be: Left: 1.25”, Right: 1.00”, Top and Bottom-1.00”. The text should be justified to occupy the full line width, so that the right margin is not ragged, with words hyphenated as appropriate. Please fill pages so that the length of the text runs to the right margin.

2. The report must be printed on one side only. Please use a high-resolution printer, preferably a laser printer with at least 300 dpi. Project reports must be printed neatly on one side of the paper on a A4 size bond paper. The reports submitted to the department/guide(s) must be hard bounded with dry tone Xerox.
3. **Abstract:** The abstract should summarize the contents of the report and should contain at least 150 and at most 350 words. It should be set in 12-point font size. There should be two blank (10-point) lines before and after the title **ABSTRACT**.

4. **Layout, Typeface, Font Sizes, and Numbering:** For the main text, please use 12-point type and 1.5-line spacing. We recommend using **Times New Roman** fonts. Italic type may be used to emphasize words in running text. Bold type and underlining should be avoided.

5. **Headings.**
The chapter headings should be in capitals and must be separated from the other text by 24-point line space. Headings should be in the form where each word is capitalized (i.e., nouns, verbs, and all other words except articles, prepositions, and conjunctions should be set with an initial capital) and should, with the exception of the title, be aligned to the left. The font sizes are given in Table 1.

Here are some examples of headings: “Criteria to Disprove Context-Freeness of Collage Languages”, “On Correcting the Intrusion of Tracing Non-Deterministic Programs by Software”, “A User-Friendly and Extendable Data Distribution System”, “Multi-flip Networks: Parallelizing GenSAT”, “Self-determinations of Man”.

Table 1 Font sizes of headings. Table captions should always be positioned Above the tables. The final sentence of a table caption should end without a period

<table>
<thead>
<tr>
<th>Heading</th>
<th>Example</th>
<th>Font Size and Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Chapter 1Introduction</td>
<td>16 Point Bold</td>
</tr>
<tr>
<td>First Level Heading</td>
<td>1.1. Preamble</td>
<td>14 Point Bold</td>
</tr>
<tr>
<td>Second Level Heading</td>
<td>2.3.1. Mandatory or Regulatory Signs</td>
<td>12 Point Bold</td>
</tr>
<tr>
<td>Third Level Heading</td>
<td>Stop and Giveaway signs</td>
<td>12 Point Bold</td>
</tr>
<tr>
<td>Fourth Level</td>
<td>Heading Creation of database</td>
<td>/2 Point Bold Italicized</td>
</tr>
</tbody>
</table>

Figures and Photographs
Check that in line drawings, lines are not interrupted and have constant width. Grids and details within the figures must be clearly readable and may not be written one on top of the other. The lettering in figures should have a height of 2 mm (10-point type). Figures should be scaled up or down accordingly.

Figures should be numbered and should have a caption which should always be positioned under the figures, in contrast to the caption belonging to a table, which should always appear above the table. Please center the captions between the margins and set them in 9-point type (Fig. 1 shows an example). The distance between text and figure should be about 12 point spacing, the distance between figure and caption about 6 point spacing.

![Fig 1.1. The last sentence of a figure caption should generally end without a period](image-url)
6. Formulas
Displayed equations or formulas are centered and set on a separate line (with an extra line or halfline space above and below). Displayed expressions should be numbered for reference. The numbers should be consecutive within each section or within the contribution, with numbers enclosed in parentheses and set on the right margin. For example, A correlation matrix is computed using equation (5). Here, and are the feature vectors of query examples and is the dimension of feature .

7. Program Code
Program listings or program commands or algorithms in the text are normally set in typewriter font, e.g., CMTT10 or Courier.
Example of an Algorithm is
Algorithm-1: Database Creation (Mean and Standard Deviation based approach)
Fig 1.1. The last sentence of a figure caption should generally end without a period.

Input: Static images of potential traffic sign
Output: Database created.
Methodology:
For each input image do
Step1: Preprocess the image as explained in section 4.3.1
Step2: Calculate the number of components in a sign as explained in section 4.3.1.
Step3: calculate a feature vector as mentioned in section 4.3.2.1.
Step4: Store the feature vector computed in step 3 in the corresponding database, based on number of components present in the sign. For End.
Algorithm End.

8. Footnotes/Header
Footnotes/Header should appear at the bottom of the normal text area, with a line of about 5 cm in Word set immediately below/above the text.

Header sample: (Project title is left aligned and page number is right aligned)
<<Project Title>> <<Page Number>>

Sample Footer:
<College Name> Department of MCA 2016-2017

9. The list of references is headed “References” and is assigned a number with square brackets in the decimal system of headings. The list should be set in small print and placed at the end of the dissertation, in front of the appendix, if any exists. Please do not insert a page break before the list of references if the page is not completely filled. An example is given at the end of this information sheet. For citations in the text please use square brackets and consecutive numbers: [1], [2], [3] etc.

10. Page Numbering
Reports must be printed with page numbers on the top right corner.

11. The total number of reports to be prepared are three
· One copy to the concerned guide
· One copy for University
· One copy to candidate
· Two CD’s having soft copy of Project report (for department purpose)
12. Before taking the final printout, the approval of the concerned guide is mandatory and suggested corrections, if any, must be incorporated.

13. Every copy of the report must contain (See formats towards the end of this document)
 1. Outer title page (off white) with a plastic cover
 2. Inner title page (White)
 3. Certificate in the format enclosed, only certificate will be signed by following:
 - Principal
 - HOD
 - Internal guide and External guide (if project is carried out in company)
 - Guide and/or Co-guide (if project is carried out in college)

14. The organization of the report should be as follows
 1. Inner title page
 2. Certificate
 3. Project Completion certificate from Company / College
 4. Declaration (by student)
 5. Acknowledgement
 6. Abstract
 7. Table of Contents
 8. List of table and figures
 9. Main body of project

Care should be taken to avoid spelling and typing errors. The student should note that report (write-up) forms the important component in the overall evaluation of the project. Sample content (more suitable for Application oriented projects) is attached and number of pages may be 40-70, which can be modified as per guide’s instructions depending on the project under development. The respective guides can decide how the content of the project report must be organized if the project is research oriented, as a specific format cannot be defined for various domains of research problems.

Note 1:
Proper attention is to be paid to the technical contents as well as to the organization of the report and clarity of the expression.

Note 2:
All the students should submit the report for each phase to the internal guide one week before the scheduled phase dates.
Weekly progress Report Format:

<table>
<thead>
<tr>
<th>Intern’s Name:</th>
<th>External Guide Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>USN:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week Num:</th>
<th>Week Period from Date: ___________ To Date: ___________</th>
</tr>
</thead>
</table>

Tasks Performed:

<table>
<thead>
<tr>
<th>Student Signature</th>
<th>Signature of External Guide with Company Seal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature of Internal Guide</th>
<th>Signature of HOD</th>
</tr>
</thead>
</table>

Fig. 1

Course Outcome (COs)

At the end of the course, the student will be able to

1. Demonstrate effective user interfaces for the software application
 Bloom’s Level L6
2. Develop applications using various tools and technologies, frameworks
 L3
3. Build enterprise applications using database and server-side technologies
 L6
4. Test and deploy competent mobile/console/web development solutions
 L6
5. Apply UML techniques to build applications
 L3

Program Outcome of this course (POs)

1. Postgraduates will demonstrate knowledge of mathematics, computer applications, and management.
 PO No. PO1
2. Postgraduates will demonstrate an ability to design a system, component or process as per needs and specifications.
 PO4
3. Postgraduates will demonstrate an ability to analyze and build computer applications for multiple domains.
 PO5
4. Postgraduates will demonstrate skills to use modern software tools and technology to build and test applications.
 PO6
5. Postgraduates will demonstrate knowledge of professional and ethical responsibilities.
 PO7
6. Postgraduates will be able to communicate effectively in both verbal and written form.
 PO8
7. Postgraduates will show the understanding of impact of engineering solutions on the society as a successful entrepreneur or IT professional.

Scheme of Continuous Internal Evaluation (CIE):

<table>
<thead>
<tr>
<th>Components</th>
<th>Phase-II</th>
<th>Phase-III</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks: 50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

- Submission and certification of project report is compulsory to qualify for SEE.
- a. 50 marks by Project phase 2 (Internal guide 25 marks + Dept presentation 25 marks).
 b. 50 marks by Project phase 3 (Internal guide 25 marks + Dept presentation 25 marks).
- Average of Phase-I and Phase-II will be considered as CIE Marks
- Minimum marks required to qualify for SEE : 25
- Internal guide has to evaluate the work progress of the student for the project work done and award the marks.
- Internal Guide has to submit the marks along with work progress report duly signed with seal, in sealed envelope to the department.
- Failing to meet the above process by candidate lead to disqualification of the project work-2 (15MCA63) course and eventually award of the degree.

Scheme of Semester End Examination (SEE):

1. It will be conducted for 150 marks of 3 hours duration.
2. Minimum marks required in SEE to pass: 60
3. Internal Examiner and an expert from Industry/ Academia jointly evaluate the project work-2.
Bloom’s Taxonomy of Learning Objectives

Bloom’s Taxonomy in its various forms represents the process of learning. It was developed in 1956 by Benjamin Bloom and modified during the 1990’s by a new group of cognitive psychologists, led by Lorin Anderson (a former student of Bloom’s) to make it relevant to the 21st century. The revised taxonomy given below emphasizes what a learner “Can Do”.

<table>
<thead>
<tr>
<th>Lower order thinking skills (LOTS)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 Remembering</td>
<td>Retrieve relevant knowledge from memory.</td>
</tr>
<tr>
<td>L2 Understanding</td>
<td>Construct meaning from instructional material, including oral, written, and graphic communication.</td>
</tr>
<tr>
<td>L3 Applying</td>
<td>Carry out or use a procedure in a given situation – using learned knowledge.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Higher order thinking skills (HOTS)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L4 Analyzing</td>
<td>Break down knowledge into its components and determine the relationships of the components to one another and then how they relate to an overall structure or task.</td>
</tr>
<tr>
<td>L5 Evaluating</td>
<td>Make judgments based on criteria and standards, using previously learned knowledge.</td>
</tr>
<tr>
<td>L6 Creating</td>
<td>Combining or reorganizing elements to form a coherent or functional whole or into a new pattern, structure or idea.</td>
</tr>
</tbody>
</table>